xy独立同分布,服从exp(2)求2x 3y的分布密度函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:49:28
xy独立同分布,服从exp(2)求2x 3y的分布密度函数
n个服从几何分布的独立同分布随机变量,加起来之后的方差怎么求?

几何分布期望为5的话,其参数p=1/5=0.2,对应单个随机变量方差DX=(1-p)/p^2=20从而DY=DX/n=20/n

概率论随机变量x和y独立同分布,均服从指数分布exp(2);求随机变量2x+3y的分布密度函数

Y1和Y2不独立的情况下,它们函数的独立性也会受到相应的影响.但是你式子中表达的意思不太清楚,你写的g1g2分别是以x1x2为自变量的函数吗?你后面又问道Y1Y2之间的关系,是要提示它们是随机变量吗?

设X,Y相互独立,且都服从标准正态分布,则Z=X/根号下Y^2服从( ) 分布,并写出分布的参数

Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2

随机变量X服从p=0.6的0-1分布Y-B(2,0.5)且XY相互独立,求二维随机变量(X,Y)的联合概率分布及概率P(

X和Y都是离散型分布  先看X的概率分布:  X01  p0.40.6  再看Y的概率分布:  Y012  p0.250.50.25  又因为X与Y相互独立,所以(X,Y)的联合概率分布为:  X\Y

证明随机变量的独立性X,Y独立同分布,服从标准正态分布N(0,1).令U=X^2+Y^2,V=X/Y求证U,V相互独立.

当s>0时做变换s=x^2+y^2,t=x/y,求其反函数.反函数有两支:x=t*sqrt(s/(1+t^2)),y=sqrt(s/(1+t^2))以及x=-t*sqrt(s/(1+t^2)),y=-

已知随机变量X,Y相互独立,且同服从分布N(0,1),又Z=根号(X^2+Y^2),求E(X),D(X)

E(Z)=E(X^2+Y^2)=E(X^2)+E(Y^2)=[DX+(EX)^2]+[DX+(EX)^2]=1+0+1+0=2因为DX=E(X^2)-(EX)^2D(Z)=D(X^2+Y^2)=D(X

设X服从参数为1的泊松分布,Y服从参数为4,0.5的二项分布,且x,y相互独立,求E(XY)

由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2

设随机变量X,Y独立同分布,且P(X=1)=P(X=-1)=1/2,定义Z=XY,证明X,Y,Z两两独立,但不相互独立

两两独立你是证了,但还要一个式子成立主是P(x=xi,y=yi,z=zi)=P(x=xi)P(y=yi)P(z=zi)成立才行但P(X=-1,Y=-1,Z=XY=-1)=0,这是因为X,Y取-1时,Z

假定随机变量X,Y独立同分布,都服从N(0,1),计算:E[MAX(X,Y)]

Z=max(x,y)当x,y)独立时,F(z)=[Fx(z)]^2-->fz(z)=2fx(z)F(z)E[MAX(X,Y)]=∫2zf(z)F(z)dz(代入标准正态分布密度函数,经分步积分可以算出

概率论 独立同分布的题怎么做如果X,Y互相独立,且服从于同一分布.有哪些性质?比如:

独立同分布说明他俩的分布密度函数可以通过各自的密度函数相乘计算出f(x,y)=f(x)f(y).分布函数为:F(X,Y)=F(X)F(Y).还有其它性质,例如相关系数为0.协方差为0.

假设X、Y都服从独立同分布的指数分布,则max(X,Y)服从什么分布呢?如何求其期望、方差

E(x+y)=Ex+Ey=1/5+3/5=0.8D(x+y)=Dx+Dy+cov(xgy)=1/25+9/25+cov(xrvzdy)需要知道xky的协方差2若相互独立

X与Y是两个相互独立同分布且他们都服从标准正态分布,则X^2/(X^2+Y^2)的期望是多少

因为X^2/(X^2+Y^2)+Y^2/(X^2+Y^2)=1所以E[X^2/(X^2+Y^2)]+E[Y^2/(X^2+Y^2)]=E(1)=1因为X、Y服从相同的分布,且相互独立,所以:E[X^2

设随机变量XY相互独立,且均服从正太分布N(0,1)则概率P(XY>0)为多少

X,Y服从正太分布N(0,1),因此P(X>0)=P(Y>0)=0.5P(XY>0)=P(X>0,Y>0)+P(X0)+P(X再问:X,Y服从正太分布N(0,1),因此P(X>0)=P(Y>0)=0.

设x,y是相互独立同服从几何分布的随机变量,即它们共同的分布率为p(x=k)=pq^(k-1),

解答过程如图,写出Z1,Z2取值与X,Y取值的关系就可计算了.经济数学团队帮你解答,请及时采纳.谢谢!

设随机变量X与Y独立同分布,且都服从标准正态分布N(0,1),试证:U=X^2+Y^2与V=X/Y相互独立

这是个著名的问题.也很有工程用途: 当一个二维信号联合正态时,幅值和相位是独立的.见图:

设X~N(1,2),Y服从参数为3的泊松分布,且X与Y独立,求D(XY)

X~N(1,2)则E(X)=1,Y服从参数为3的泊松分布,则E(Y)=3;E(Y^2)=3^2+3=12;E(X^2)=1;D(xy)=E[(xy)^2]-E^2(xy)=E(x^2y^2)-E^2(

随机变量X,Y独立且同分布.服从于N(0,1/2).求|X-Y|的期望与方差

Z=X-Y服从N(0,1).E(|Z|)=(2/√2π)∫ze^(-z^2/2)dz=√(2/π)E(|Z|^2)=E(Z^2)=D(z)=1D(|z|)=1-2/π