x^-2-cot^2x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:05:05
x^-2-cot^2x
lim(cosx)^cot^2x当x趋近于0

原式=lim(x->0)e^[cot²xln(cosx)]=e^[lim(x->0)ln(cosx)/tan²x]=e^[lim(x->0)ln(cosx)/x²]=e^

lim x趋于pai/2 (x-pai/2) cot 2x

洛必达法则上下求导得答案是1/2再答:把cot2x写成cos2x/sin2x

求极限LIM(趋近与0)(cot^2 *x-1/x^2)

LIM(趋近与0)(cot^2x-1/x^2)=lim(x^2*cos^2x-sin^2x)/(x^2*sin^2x)=lim[(x^2+1)cos^2x-1]/x^4=lim[(1/2)*(x^2+

化简sin(派-x)+sin(派+x)-cos(-x)+cos(2派-x)-tan(派+x)cot(派-x)

sin(π-x)+sin(π+x)-cos(-x)+cos(2π-x)-tan(π+x)cot(π-x)=-sin(-x)-sin(x)-cos(x)+cos(-x)-[-tan(x)][-cot(-

求证!(1 + cosx )/sinx = cot(x/2)

1+cosx=1+2(cosx/2)^2-1=2(cosx/2)^21+cosx-------=2(cosx/2)^2/2sin(x/2)*cos(x/2)=cot(x/2)sinx

化简:sin(2派-x)tan(派+x)cot(-x-派)/tan(3派-x)cos(派-x)

sin(2派-x)tan(派+x)cot(-x-派)/tan(3派-x)cos(派-x)=-sinxtanxcot(-x)/tan(-x)(-cosx)=sinxtanxcotx/tanxcosx=s

微积分方程求解e^x + (e^x cot y + 2y csc y)y' = 0

大致能看清楚吧,就是把原式转化成e^xsinydx+(e^xcosy+2y)dy=o这个全微分方程,然后用全微分方程的方法做,答案是e^xsiny+y^2=C

x →0时lim(1+x^2)^cot^2x求极限要详细过程.

lim(1+x²)^cot²x=lim(1+x²)^(1/x²)(x²cot²x)=lime^(x²/tan²x)=e

用洛必达法则求limx→0(1/x^2-cot^2x)的详细步骤

limx→0(1/x^2-cot^2x)=limx→0(1/x^2-sin^2x/cos^2x)=limx→0[(sin^2x-x^2cos^2x)/x^2sin^2x]=limx→0[(sin^2x

证明(tan^2x-cot^2x)/(sin^2x-cos^2x)=sec^2x+csc^2x

左边=(sin²x/cos²x-cos²x/sin²x)/(sin²x-cos²x)=[(sin^4x-cos^4x)/cos²x

证明(tan^2x-cot^2x)/(sin^2x+cos^2x)=sec^2x+csc^2x

sin^2x+cos^2x=1所以左边=tan^2x-cot^2x=sin^2x/cos^2x-cos^2x/sin^2x=(sin^4x-cos^4x)/sin^2xcos^2x=(sin^2x+c

lim(x→0)=(1/x^2-cot^2x)

lim(x→0)=(1/x^2-cot^2x)=lim(x→0)=(1/x^2-1/tan²x)=lim(x->0)(tan²x-x²)/x²tan²

怎么证明tan^2x+cot^2x=2(3+cos4x)/1-cos4x

tan^2x+cot^2x=tan^2x+1/tan^2x=[(sinx)^4+(cosx)^4]/(sinxcosx)^2={[(sinx)^2+(cosx)^2]^2-2(sinxcosx)^2}

设y=(tan2x)^cot(x/2) ,求dy/dx

楼上好像写错了,要细心啊两边取对数,得lny=ln【(tan2x)^cot(x/2)】=cot(x/2)ln(tan2x)两边再分别求导,得y'/y={-[csc(x/2)]^2*ln(tan2x)}

lim (arcsinx/x)^{[cot(x)]^2} x→0

我算了下,你看看行不lim(arcsinx/x)^{[cot(x)]^2}(x→0)=lim[1+(arcsinx-x)/x]^{[cot(x)]^2}(x→0)=lim[1+(arcsinx-x)/

用等价代换limx趋于0(1/x^2-cot ^2x)

当枯叶化作灰烬的尘埃我们在餐桌上生下孩子,又在餐桌上准备父母的葬礼.我一小块花园.人面多麽佳丽无奈船已远航为了那气息——它仍在那里摇荡.面的么打击,他们为能无力改变哈哈

求不定积分 (tanx+2cot^2x)^2dx

原式=∫[(tanx)^2+4cotx+4(cotx)^4]dx=∫[(secx)^2-1]dx+4∫cotxdx+4∫[(cscx)^2-1]^2dx=tanx-x+4∫d(sinx)/sinx+4