x^2 y^2 z^2=R^2曲面积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:02:25
[X,Y]=meshgrid(linspace(-10,10),linspace(-10,10));Z=(X.^2)/(4^2)-(Y.^2)/(5^2);mesh(X,Y,Z)
-(pi*(5*5^(1/2)-27))/6另附Matlab程序段:%此程序为计算空间中给定的曲面r(u,v)的面积clearall;clc;symsuv;%{设置曲面的向量形式r(u,v)=分量函数
根据圆柱面的面积公式,ds=2πRdz把x^2+y^2=R^2带入原积分得到原积分=∫ds/(x^2+y^2+z^2)=∫(0->h)2πRdz/(R^2+z^2)=2π∫(0->h)d(z/R)/[
x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²
因为上式是一个空间曲面,要求原点到曲面最短距离,可以想象成有个球体与这个曲面相切,球的半径r就是最短距离所以设x^2+y^2+z^2=r^2球与曲面相交即x^2+y^2+xy+x-y+4=r^2进行配
很简单!建立方程L(x,y,z,c)=(x^2+y^2+z^2)^1/2+c(z^2-xy-x+y-4)然后分别对L求偏导,最后求的xyzc,最后再代入方程L就是说球的结果!
对于z=f(x,y),曲面面积为A=∫∫DdA=∫∫D√[1+(əf/əx)²+(əf/əy)²]dxdy锥面z=√(x²+y
柱面(x^2+y^2)^2=x^2-y^2化成极坐标方程是r^2=cos2θ.即r=√cos2θ.θ的范围是[-π/4,π/4]∪[3π/4,5π/4]S=∫∫dS=∫∫√[1+(z'x)^2+(z'
设A(x1,y1,z1)为x/2=y=-(z-1)上的任意点,其关于x轴的对称点为A'(x,y,z).易知:x=x1,y1=(x1)/2,z1=1-(x1)/2,y+z=y1+z1→2(y+z)=x-
貌似是根号2/2思路是对的呀分别对x,y,z偏导得x/根号(x^2+y^2+z^2)+2к(x-y)=0y/根号(x^2+y^2+z^2)-2к(x-y)=0z/根号x^2+y^2+z^2+2кz=0
使用高斯公式后,化简后被积函数跟积分区域的圆柱体挺难构造关系,就按投影一步一步算吧.∑被积区域可以看成3个平面围成,S1:z=R,S2:z=-R,S3:x^2+y^2=R^2.可以看出S1,S2只在x
令P=xy²,Q=yz²,R=zx²∵αP/αx=y²,αQ/αy=z²,αR/αz=x²∴由高斯公式,得原式=∫∫∫(αP/αx+αQ/α
ezmesh('sqrt(4-x^2-y^2)')
这个圆柱面在xoy上的投影为0所以dxdy=0写出圆柱面的参数方程x=Rcost,y=Rsint,0
这题,昨天刚刚答了.这个不能用高斯定理,因为在这个比区域内,含有积分函数的奇点(0,0,0)所以分开来求即可.对于z=R和z=-R两个面∑1和∑2,因为dz=0而且两个面处,z=R处的投影,是朝上的圆
方程x^2/4+y^2=z^2,表示什么曲面表示锥面.再问:A.椭球面,B.双曲面,C.锥面,D.双曲线,选哪个?再答:C.锥面,不客气。
/>曲面的切平面为xXo-2yYo+2zZo=1求最短距离,则切平面与平面x+y+z=2平行即Xo/1=-2Yo/1=2Zo/1即Xo=-2Yo=2Zo即2xZo+2yZo+2zZo=1即2Zo(x+
楼上前一个积分算错了,这不是上半球面.我的答案:如有不懂,再问:您的问答我看懂了。不好意思,还有到类似的问题,不知道能否请您帮我解答下:曲面积分∫∫(y^2-x)dydz+(z^2-y)dzdx+(x
1.椭球面.关于原点中心对称.系旋转曲面.由YOZ坐标平面的椭圆(y^2)/9+(z^2)/4=1绕Y轴旋转180度形成;或者由XOY坐标平面的椭圆(x^2)/4+(y^2)/9=1绕Y轴旋转180度