X~U(0,1), 求Y=2X-1的概率密度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:42:47
那个U是平均分布吧?是的话就这么做:取小区间dy,则dy=2x*dx,值为dy的概率就是dp=0.5*dx,则概率密度:f=dp/dy=0.5*dx/(2x*dx)=1/(4x)=1/(4*y^0.5
U=(2X+3Y)(4Z-1)=8XZ-2X+12YZ-3YE(U)=8E(X)E(Z)-2E(X)+12E(Y)E(Z)-3E(Y)//:E(X)=0,E(Y)=0.5,E(Z)=5;//:N(5,
X~N(1,2)则E(X)=1D(X)=2Y~U(0,2)则E(Y)=1D(Y)=1/3E(Y^2)=D(Y)+(E(Y))^2=4/3X和Y独立则E(X-Y^2)=E(X)-E(Y^2)=1-4/3
Z=min(X,Y)f(x,y)=1*(1/2)=1/2P(Z>=z)=P(X>=z,Y>=z)最小的那个都大於z,全都大於z=∫(z~2)∫(z~1)1/2dxdy=(1-z)(2-z)/2(0
u=x²+4y=x²-2x-2=(x-1)²-3最小值3
x=1-2yu=(1-2y)^2+y^2=1-4y+4y^2+y^2=5y^2-4y+1=5(y-2/5)^2+1/5所以最小值=1/5
将y=[(x+1)²]u(x)代入方程可得:(x+1)u'(x)=(x+1)³因此u(x)=1/3(x+1)³+C
使用线性规划做,可解得(1)z=x+y的取值范围是3
x、y自变量,将式子对x偏导u²+v²-x²-y=0,对x求导2uu'+2vv'-2x=0uu'+vv'-x=0(1)-u+v-xy+1=0-u'+v'-y=0(2)联立
δu/δx=-sin(2x+y+z)(2+δz/δx)δz/δx=-(2xy-2xz-1)/(-x²)=(2y-2z-1)/x将已知值代进去即可得偏导再问:为什么δu/δx=-sin(2x+
先求分布函数,对其求导,就获得概率密度函数;因为概率密度函数积分可以获得分布函数.p(x)=1,when0
1...x不等于1时y=x/(x-1)u=x+2x/(x-1)=(x-1)+2/(x-1)+3>=3+2√2此时x不为1能取到等号2...x=1时等式不成立故不可能所以最小值是3+2√2
作y=x+5、y=-x,x=3三条直线,从其大小关系可以得出,表示的区域为等腰直角三角形.u=(x+2)^2+(y+1)^2为圆心(-2,-1),半径为√u的圆形,故u最小值时即为求(-2,-1)到y
X~U(0,π)(均匀分布),x的密度函数为1/π,x∈(0,π)时,其它均为0X~U(0,π),Y=2X+1∈(1,2π+1)的密度函数为1/(2π),x∈(1,2π+1)时,其它均为0【【不清楚,
用分布函数间接计算
再问:后面的的1-1/y怎么到最后的答案再答:求导啊,密度函数就是分布函数求导
Y=-2ln(X)在X~(0,1)上是相互一对一的函数关系所以可以使用密度函数乘上导数的方法fy(y)=fx(x(y))*|dx/dy|=1|dx/dy|Y=-2ln(X)lnX=-0.5YX=e^(
你的1/18是怎么来的?明明fx(x)=1/2而已,Y应该也是啊,Jacobbi行列式为1,所以fY(y)=1/2变范围(-1再问:大概可能是这样再答:1-3X?那你题目给错了,你求导求错了fY(y)
1)拉格朗日乘子法在处理完全约束的情况下,如果u在限定条件φ=0下最值存在,是一定可以找到的.2)-4)这里有一个关键点你弄错了,原限定曲面φ(x,y,z)=0是没有边界的,之所以出现了边界,是因为你
你的答案肯定错了,因为X在底数位置上,X不是自变量,所以不能用公式.应该先把原函数化简为y=lnu(x)/lnx再求导