x加上更号下一加lnx分之dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:35:16
是y=linx²么dy/dx=1/x².(x²)'=1/x².(2x)=2x/x²dy/dx|x=1=2*1/1²=2
x/(x-lnx)做法:分子化为(x-lnx)+(1-x),这样积分化为2个,∫(x-lnx)/(x-lnx)^2dx+∫(1-x)/(x-lnx)^2dx=∫1/(x-lnx)dx+∫xd1/(x-
设u=lnx,dv=xdx,则∫xlnxdx=∫lnxd(x*x/2)=(x*x/2)lnx-∫(x*x/2)d(lnx)=(x*x/2)lnx-1/2∫xdx=(x*x/2)lnx-x*x/4+c?
原式=∫ln(lnx)d(lnx)令lnx=y,得:原式=∫lnydy=ylny-∫yd(lny)=ylny-∫dy=ylny-y+C=lnxln(lnx)-lnx+C
分步积分=0.5积分号lnxdx*x=0.5x*x*lnx-0.5x*x
解∫lnx/xdx=∫lnxd(lnx)=∫udu=1/2u²+C=1/2(lnx)²+C
1-lnx=(x-lnx)-x(1-1/x)凑微分∫[(1-lnx)/(x-lnx)^2]dx=x/(x-lnx)+C再问:过程能不能详细点再答:(x-lnx)'=1-1/x,∫[(1-lnx)/(x
S[(x*lnx)^(3/2)]*(lnx+1)dx=S[(x*lnx)^(3/2)]*(xlnx)'dx=S[(x*lnx)^(3/2)]*d(xlnx)=1/(1+3/2)*(x*lnx)^(1+
∫f(x)dx=lnx/x+c两边同时求导,得:f(x)=(1-lnx)/x^2
∫dx/(x*lnx)=∫(1/x)dx/lnx=∫d(lnx)/lnx=ln(lnx)+C
∫xlnxdx=1/2∫lnxd(x^2)=1/2x^2lnx-1/2∫x^2*1/xdx=1/2x^2lnx-1/4x^2+C∫lnx/xdx=∫lnxd(lnx)=1/2ln^2(x)+C∫dx/
x/(x-lnx)做法:分子化为(x-lnx)+(1-x),这样积分化为2个,∫(x-lnx)/(x-lnx)^2dx+∫(1-x)/(x-lnx)^2dx=∫1/(x-lnx)dx+∫xd1/(x-
dx^(1/2)=(1/2)x^(-1/2)dx∫x^(-1/2)lnxdx=2∫lnxdx^(1/2)
∫lnx/[x√(1+lnx)]dx令t=√(1+lnx),则lnx=t^2-1,x=e^(t^2-1),代入得∫lnx/[x√(1+lnx)]dx=∫lnx/[√(1+lnx)]d(lnx)=∫(t
采用分部积分了!因为∫[dx/(lnx-x)+(1-x)dx/(x-lnx)^2]=∫dx/(lnx-x)+∫x(1/x-1)dx/(x-lnx)^2=∫dx/(lnx-x)+∫xd(lnx-x)/(
上下同时处以x^2,∫[(1+lnx)/x^2]/[(x+lnx)/x]^2dx=∫1/[(x+lnx)/x]^2d[(x+lnx)/x],这就变成了∫1/ada型,结果为ln|a|+c,将a换掉即可
∫(f'(lnx)/(x√f(lnx)))dx=∫(f'(lnx)/√f(lnx)d(lnx)=∫[f(lnx)]^(-1/2)df(lnx)=2√f(lnx)+C
∫x(1+lnx)dx=∫(1+lnx)d(x²/2)=(1/2)x²(1+lnx)-(1/2)∫x²d(1+lnx)=x²/2+(1/2)x²lnx
(x/lnx)dx=[x'lnx-x(lnx)']/(lnx)²]dx=[(lnx-1)/(lnx)²]dx提示:直接用导数公式(u/v)'=(u'v-uv')/v²
有分部积分知识可知:∫x(lnx)²dx =(1/2)∫(lnx)²d(x²)=x²(lnx)²/2—∫xlnxdx=x²(lnx)