x服从参数为2的指数分布,求Y=1-e^2x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:58:42
随机变量X服从参数为2的指数分布EX=1/2DX=1/4EX²=(EX)²+DX=1/2EY=1/4E(2X²+3Y)=2*(1/2)+3*(1/4)=7/4
提示:假设Z=min(X,Y)Pr[Z
对参数为入1,入2的两个指数分布X1,X2P(X1>X2)=入1/(入1+入2)1/(1+1)=1/2E(a),E(b)为例P(X>Y)∫(0~)∫(0~y)abe^(-ax-by)dxdy=∫(0~
设z=xyf(z)=f(z|x)f(x)=f(y|x)f(x)得证第二步应该是x已知为常数,所以分布密度.
先令Y=lnXF(y)=P{Y≤y}=P{lnX≤y}=P{X≤e^y}=Fx(e^y)=1-e^(-e^(y+1))此为Y的分布函数f(y)=F`(y)=e^(y+1-e^(y+1))你确定参数是e
有卷积公式啊,fz(z)=[fx(Z-Y)fy(y)dy其中[表示积分号,积分区域是整个定义域对于这个题,代入上式fz(z)=[1*e的-y次方dy积分区域是0到1,积分出来等于1,在其他范围内是0,
对于X有:DX=1/4EX=1/2所以EX²=DX+(EX)²=3/4对于Y有EY=1/4所以E(2X²+3Y)=2EX²+3EY=9/4注:各个版本教材对指数
令Z=min(X,Y),则:P{Z=min(X,Y)>z}=P{X>z,Y>z}=P{X>z}*P{Y>z}易知:P{X>z}=1-z(0==0)所以:P{Z=min(X,Y)>z}=[1-z]*[1
参数为1,就是λ为1
分布函数:p{Y
X的概率密度函数:fX(x)={e^-x,x>0{0,x0时,有FY(y)=P{X^2≤y}=P{-√y≤x≤√y}=∫(-√y→√y)fX(x)dxfY(y)=d[FY(y)]/dy=d[∫(-√y
解法的要点如下图,先找出分布函数的关系.经济数学团队帮你解答,请及时采纳.谢谢!
积分不知道怎么打积0-2就这么表示了(∫0-2)能看明白就行X的分布函数f(x)=e^(-x)(x>0)0(x2)(指数分布)∫f(x)dx/2(积分区间0-2)=(1-1/e^2)/2(2>y>0)
指数分布的期望为参数的倒数,所以EX=1/2,EY=1/4故E(2X)=1,E(3Y)=3/4
提示:EY=E(X+e^(-2X))=EX+E(e^-2X)前面的EX=1,后面的式子根据期望的定义式.求出不理解,可以继续提问再问:指数的f(x)是什么?再答:x>0时f(x)=e^xx
这个题目没错F(3,4)=P{X≤3,Y≤4}=P{X≤3,X^2≤4}=P{-2≤X≤2}直接求结果,不要先求分布函数,那样很麻烦的
X的分布函数:F_X(x)={1-e^-λx,x>0{0,x
设u=x+y,v=x/(x+y),算u,v的联合分布之后再求边际分布.
pdf(概率密度)fx=exp(-x)cdf(累计概率)Fx=1-exp(-x)那么x2的概率=exp(-2),反正是连续函数,等号无所谓E[Y]=p(x2)]=2-2exp(-2)+E[X(>2)]