X服从正态分布N 当 X落入(1,3)的概率最大

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:08:41
X服从正态分布N 当 X落入(1,3)的概率最大
概率论正态分布设随机变量X、Y相互独立,且都服从正态分布N(1,2),则下列随机变量中服从标准正态分布的是A.(X-Y)

A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这

概率题设已知变量X服从正态分布N

E(Y)=E(200X185)=2185,D(Y)=200²D(X)=100²,P{2070<P<2300}=P{(2070-2185)/100<(Y-2185)/100<(230

概率论与数理统计设随机变量X服从正态分布N(0,1),Y服从正态分布N(0,1),且X,Y相互

设A=E(X^2/(X^2+Y^2)),B=E(Y^2/(X^2+Y^2)),A+B=1,A-B=0.所以...A=0.5

设随机变量X服从正态分布,且X~N(-3,4),则连续型随机变量Y=()服从标准正态分布N(0,1)

Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)

设二维随机变量(X,Y )服从二维正态分布N(0,0,1,1,0)求P(X+Y0)

X,N(0,0,1,1,0)说明X,Y独立同分布N(0,1)fX(x)=φ(x).P(X+Y0)=P(X>0,Y>0)+P(X

已知随机变量X服从正态分布N(0,1),求E(X^2)、E(X^3)与E(X^4)?

X~N(0,1)则Y=X^2~~卡方分布X^2(1)所以EX^2=1E(X^4)=DY+(EY)^2=2+1=3E(X^3)=0.pdf概率密度函数关于y对称.当然,也是可以像沙发同志那样做.不过有点

设连续随机变量X服从标准正态分布N(0,1),求Y=1-2X的概率密度函数

正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)

随机变量X服从正态分布N(u1, ),Y服从正态分布N(u2, ),X与Y独立,则X+Y服从

(u1+u2,σ1^2+σ2^2)^代表平方哈,这是正态分布的可加性吧再问:那X-Y呢?谢谢你啊,要考试了其实是想知道X+Y与X-Y的方差相不相等。麻烦帮个忙再答:相等的,当X,Y不独立,D(X+(或

请问随机变量X服从正态分布

就是满足正态分布的性质.

相互独立随机变量X,Y,服从正态分布N(0.1)

1fX(x)=(1/√2π)e^(-x^2/2)fY(y)=(1/√2π)e^(-y^2/2)因为x,y独立,所以联合概率密度所以fXY(x,y)=fX(x)fY(y)=(1/2π)e^[-(x^2+

如果X 服从正态分布 N ( 1 ,25 ),计算概率P { | X |≤1 }.

P{|X|≤1}=P{-1≤X≤1}=P{-1-1≤X-1≤1-1}=P{-2≤X-1≤0}=P{-2/5≤(X-1)/5≤0}=Φ(0.4)-0.5

如果X 服从正态分布 N ( 2 ,25 ),计算概率P { | X |≤1 }.

P{|X|≤1}=P{-1≤X≤1}=P{(-1-2)/5≤(X-2)/5≤(1-2)/5}=P{-3/5≤(X-2)/5≤-1/5}=Ф(-0.2)-Ф(-0.6)=1-Ф(0.2)-1+Ф(0.6

如果X服从正态分布N(1,25),计算概率P{|X|小于等于1}

μ=1,σ=5u=(X-μ)/σ=(X-1)/5查表得:P{|X|小于等于1}=P{-1≤X≤1}=P{-0.4≤u≤0}=0.5-(1-0.6554)=0.1554

已知随机变量x服从正态分布n(3,1),且p(2

从正态分布的参数可以知道这个分布的均值是3所以p(2

随机变量X服从正态分布N(2,4),若P(X

由X~N(2,4),得Y=(X-2)/2~N(0,1),因此P(X