x服从泊松分布 x的均值服从

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:46:57
x服从泊松分布 x的均值服从
X服从泊松分布,求1/(X+1)的期望,怎么算?

P{X=k}=e^(-a)a^(k)/k!1=sum_{k=0->正无穷}P{X=k}=sum_{k=0->正无穷}e^(-a)a^(k)/k!E{1/(X+1)}=sum_{k=0->正无穷}e^(

设随机变量X服从参数为3的泊松分布,则X平方数学期望,

依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;

设X服从参数为1的泊松分布,Y服从参数为4,0.5的二项分布,且x,y相互独立,求E(XY)

由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y仍服从泊松分布,参数为6

这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y服从泊松分布,参数为6

要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[

X服从泊松分布求E[X(X-1)]

设X服从泊松分布,参数为λ,那么EX=λ,DX=λ,所以E[X(X-1)]=E(X^2)-EX=DX+(EX)^2-EX=λ+λ^2-λ=λ^2.也可以直接根据定义E[X(X-1)]=sum(n(n-

已知X服从泊松分布,求X的特征函数.

很简单啊.特征函数E(exp(itx)),其中x服从泊松分布,于是(我中间都是乘起来的,没写乘号而已)E(exp(itx))=sum(k从0到无穷)exp(itk)exp(-lambda)lambda

x服从泊松分布,p(x=0)=0.4,求p(x>2)!

p(x=0)=0.4=e^(-λ)λ=-ln0.4p(x=1)=-0.4ln0.4p(x=2)=0.4ln²0.4p(x>2)=1-P(x=0)-P(x=1)-P(x=2)=1-0.4(ln

设随机变量X,服从参数T,T>0的泊松分布,求E(X平方)

E(X^2)=E(X^2-X+X)=E[X(X-1)+X]=E[X(X-1)]+E(X)=∑(k=0→∞)k(k-1)T^ke^(-T)/k!+∑(k=0→∞)kT^ke^(-T)/k!=∑(k=2→

X服从正态分布,X的平方服从什么分布

X服从正态分布,则X的平方服从卡方分布.

设总体X服从参数为λ的普阿松分布(泊松分布),它的分布律为:

首先写出似然函数LL=∏p(xi)=∏{[(λ^xi)/(xi!)]·e^(-λ)}=e^(-nλ)·∏{[(λ^xi)/(xi!)]=e^(-nλ)·λ^(∑xi)·∏1/(xi!)然后对似然函数取

随机变量X服从参数为1的泊松分布,则E(X²)=____

P(1),所以E(X)=1,D(X)=1,又因D(X)=E(X²)-E²(X),所以E(X²)=D(X)+E²(X)=2

已知随机变量x服从参数为2的泊松分布则E(X2)=

因为$X\simP(2)$,所以,$\E{X}=2$,$\Var{X}=2$.所以$\E{X^2}=\Var{X}+\E{X}^2=2+2^2=6$,建议好好看看书上的随机变量数字特征这一章,因为$\

设随机变量X服从参数为4的泊松分布,则DX =____________.

泊松分布的期望Ex=λ=4,Dx=λ=4PS:泊松分布式(λ^k)/k!*e(-λ)

设X服从参数为1的泊松分布,则P(X>1)

楼上的答案似乎不对P(X>1)=1-P(X=1)-P(X=0)=1-e^(-1)-e^(-1)-=1-2/e=0.26424

随机变量X,Y相互独立,分别服从参数为a,b的泊松分布,证明X+Y服从参数为a+b的泊松分布.

π(a)π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k,Y=m