x的平方乘以lnx的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:11:37
原式=x^2/Inx(1+x^2)^2|(1→2)-∫(1→2)dx^3/Inx2(1+x^2)^2=[x^2-(x^3/2)]/Inx(1x^2)^2|(1→2)=0(由于分母总是等于0,本题考察分
分步积分=0.5积分号lnxdx*x=0.5x*x*lnx-0.5x*x
再问:�����
∫x^2*e^(x^2)dx和∫x^2*e^(-x^2)dx,不定积分均无法用初等函数表示,但∫x^2*e^(-x^2)dx在[0,+∞)上的定积分可求出∫(0→+∞)x^2*e^(-x^2)dx=∫
点击放大、荧屏放大再放大:
积分限应该告诉一下如果关于原点对称那么由1+sinx的平方分之x平方乘以sinx是奇函数,利用偶倍奇零,得原式=0再问:�Dz�����֣���ô�⣿
=∫-x²/5x²dx=∫(-1/5)dx=-x/5+C=∫9^x*e^xdx=∫(9e)^xdx=1/ln(9e)*∫ln(9e)*(9e)^xdx=(9e)^x/ln(9e)+
根据题意,先求不定积分部分:∫(lnx)^2/xdx=∫(lnx)^2d(lnx)=(1/3)(lnx)^3.所以,则定积分为:定积分=(1/3){[ln(e^2)]^3-[lne]^3}=(1/3)
Unexpectedlyonlymecanhelpyou?Don'tmindIsayEnglish.LetN=∫(e→+∞)f(x)dx,sincethisintegralisconvergent,i
1.分步积分.原式=-lnx/x|(∞,1)+∫(1,∞)1/x^2=-1/x|(∞,1)=1再问:能解释具体点吗?再答:就是ln(x)/x^2dx=ln(x)d(-1/x)然后分步积分(学了吗?)交
∫x^2sinxdx=-∫x^2dcosx=-x^2cosx+∫cosx*2xdx=-x^2cosx+2∫xdsinx=-x^2cosx+2xsinx-2∫sinxdx=-x^2cosx+2xsinx
原式=-∫(lnx)²d(1/x)=-(lnx)²/x+∫(1/x)d(lnx)²=-(lnx)²/x+∫2lnx/x²dx=-(lnx)²
原式=∫dx/lnx-∫dx/ln²x=∫dx/lnx-∫xd(lnx)/ln²x(∵dx=xlnx)=∫dx/lnx-(-x/lnx+∫dx/lnx)+C(第二个积分应用分部积分
I=∫(1,e²)dx/(x√(1+lnx))设t=√(1+lnx),t²=1+lnx,x=e^(t²-1),dx=e^(t²-1)*2tdtI=∫(1,e
原式=∫d(lnx)/(lnx)^2=-1/lnx+C再问:∫上面是正无穷,下面是e的反常积分是多少。。。再答:原式=-1/lnx|(e→+∞)=0+1=1(因为lim(t→+∞)-1/lnt=0)
有用请及时采纳,谢谢!~
替换x=sect,tant=根号(sec^2t-1)=根号(x^2-1)dx=secttant积分=积分sect*根号(sec^2t-1)secttantdt=积分sect*根号(tan^2t)sec
(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出