y-xe的y次方=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 00:54:17
y=1+xe^y==>y'=(1+xe^y)'==>y'=(xe^y)'==>y'=1*e^y+xe^y*y'==>y'(1-xe^y)=e^y==>y'=e^y/(1-xe^y)因为y=1+xe^y
求导得Y’=e^x(1+x)+2Y’=3y=3x+b将点带入得b=1y=3x+1
y=e^x的导数y'=e^xy=e^(x^2)的导数y'=e^(x^2)*(x^2)'=2xe^(x^2)故y=xe^(x^2)的导数是:y'=x'*e^(x^2)+x*[e^(x^2)]'=e^(x
y=e^x(xcosx)=e^x(xcosx)+(xcosx)'e^x=xe^xcosx+e^x*cosx-e^x*x*sinx.
Q1:按照正常移向即可,将y'移到一边并合同.y'-xe^y*y'=e^yy'(1-xe^y)=e^yy'=e^y/(1-xe^y)Q2:(1)切线方程在(0,1)的切线方程的斜率正好为y'的值.将(
1、y=e的ax次方+axe的ax次方;2、y=-20(1-2x)的九次方;我想说,如此简单的复合函数求导都不会,不知你打了多少节课的瞌睡.上课还是听点吧,会自学自学也行再问:我想问第一个你确定对么?
前一个题目两边同时求导,也太简单了.第二个设y=x^5+x-1dy=5x^4+1,全域恒正,所以Y单调递增(R上的单调函数),由于X=0时Y=-1,x=1时y>0,所以,根据连续函数零值定理,在X=0
y=1-xe^y对x求导y'=0-1*e^y-x*e^y*y'所以y'=-e^y/(1+xe^y)所以x=1,y=0切线斜率k=y'=-1/(1+1)=-1/2法线垂直切线,所以斜率是2都过(1,0)
y=C1e^x+C2e^(2x)+1/2-x(x/2+1)e^x.
当x=0时,有y+0=1即y的1次方(0)=1因此y的n次方(0)=1的n次方=1
应用隐函数求导,两边对X求导即可:e^y+xe^yy'+y+xy'+y'=0y'=-(y+e^y)/(xe^y+x+1)x=0时,代入原方程得:y=1因此有:y'(0)=-(1+e^1)/(0+0+1
y=1-xe^y两边同时对x求导得y'=-e^y-xe^y·y'y'(1+xe^y)=-e^yy'=-e^y/(1+xe^y)
y'=-e^y-xe^y*y'(1+xe^y)y'=-e^yy'=-e^y/(1+xe^y)
y=xe^(-x),所以ye^x=x连续n次求导可得递推公式y(n)e^x+y(n-1)e^x=(-1)^n所以y(n)=(-1)^n(x-n)e^(-x)
y=1+xe^y方程两边求导y'=e^y+xe^y*y'y'(1-xe^y)=e^yy'=(e^y)/(1-xe^y)y''={e^y*y'*(1-xe^y)+e^y[e^y+xe^y*y']}/(1
y'=-(e^y+xy'e^y)-y'=e^y+xy'e^yxy'e^y+y'=-e^y(xe^y+1)y'=-e^yy'=-e^y/(xe^y+1)y'=-e^y/(xe^y+1)
dy+d(x*e^y)=d(1)dy+xd(e^y)+e^ydx=0dy+xe^ydy+e^ydx=0(xe^y+1)dy=-e^ydxdy/dx=-e^y/(xe^y+1)
y-xe^y+x=0两边求导:y'-e^y-xe^y*y'+1=0【(xe^y)'=x'(e^y)+x*(e^y)'=e^y+xe^y*y'】(1-xe^y)y'=e^y-1y'=(e^y-1)/(1