y=0到正无穷 x^2e^-2x 的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 20:04:08
∫x^4*e^(-x^2)dx=2∫x^4*e^(-x^2)dx(从0到+∞积分)=2∫t^2e^(-t)*1/[2√t]dt(设t=x^2)=∫t^(5/2-1)e^(-t)dt=Γ(5/2)=3/
symsxint(0.5*exp(-abs(x)),-inf,inf)使用的是int函数,有三个参数,第一个是积分函数,第二个和第三个分别是上下限
|y|=|2x/(1+x)^2|<|2x/2x|=1∴该函数有界
当λ≥0时,∫x²e^(-λx)dx不存在当λ>0时,∫x²e^(-λx)dx=[-x²e^(-λx)/λ]│+(2/λ)∫xe^(-λx)dx(应用分部积分法)=(2/
f(4*(1/2))=f(4)+f(1/2)∴f(1/2)=f(2)-f(4)=f(2)-f(2*2)=f(2)-f(2)-f(2)=-1
∫dx∫(x,√3x)e^[-(x^2+y^2)]dy=∫dt∫(0,+∞)e^(-r^2)rdr=(π/12)∫(0,+∞)(-1/2)e^(-r^2)rd(-r^2)=(π/24)[-e^(-r^
设arctanx=α,(1)则α∈(-π/2,π/2)且tanα=x由cos²α=1/(1+tan²α)及cosα>0,得cosα=1/√(1+x²)所以sinα=tan
由分部积分将原积分化为2sinxcosx/x从0到无穷积分上式等于sin2x/x由变量替换可化为sinx/x从0到正无穷积分该积分为Dirichlet积分其值为pai/2,pai为圆周率至于Diric
a>0.a>=1的时候,要看x趋于无穷的情况,此时x^(a-1)比起e^x,都是无穷小,而e^x*e^(-x^2)显然是收敛的.a再问:但是答案是a>1/2tangram_guid_135799679
函数f(x)=e^x+2x^2-x+1连续,故其在0点的极限就是函数值limf(x)=1+1=2,x趋于0又f(0)=k∴k=2
∵y=x^2-4x, ∴y′=2x-4=2(x-2).显然,当x>2时,y′>0, ∴原函数在(2,+∞)上是增函数.
解你好你的条件是不是当x≥0时f(x)=x2-2x-3如果是这样做令x<0则-x>0即f(-x)=(-x)²-2*(-x)-3=x²+2x-3又有y=f(x)是(负无穷到正无穷)上
x—>正无穷时,分子分母同趋于正无穷所以可以用洛必达法则lim(e^x+2xarctanx)/(e^x-πx)=lim(e^x+2arctanx+2x/(1+xx))/(e^x-π)=lim(e^x+
使用伽玛函数和余元公式比较方便Γ(x)=∫t^(x-1)/e^tdt积分限为0到正无穷大取x=3/2得Γ(1/2)=∫t^(-1/2)*e^(-t)dt=∫1/x*e^(-x^2)d(x^2)=2∫e
详细积分过程, 包括取极限, 以及关键步骤的解释, 请见下图.点击放大,再点击再放大.(稍等几分钟,图已经传上)
3=1+1+1=f(2)+f(2)+f(2)=f(2×2×2)=f(8)f(x)+f(x-2)
结果为圆周率的1/2次方,这是一个特殊的积分这个积分称为高斯积分,高斯积分
-3<f(2x+1)≤0f(-2)<f(2x+1)≤f(0),在[0到正无穷]上为增函数,得在负无穷到正无穷上为增函数,所以,-2<2x+1≤0-3
1)分布函数把密度函数作到x为止的积分F(x)=∫(-无穷~x)f(x)dx=0.5e^x(x0时)=F(0)(到0为止的累积密度)+∫(0~x)f(x)dx=0.5+0.5(1-e^(-x))=1-