y=1-x*e^y求隐函数的导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:54:33
xy+e^y=y+1(1)求d^2y/dx^2在x=0处的值:(1)两边分别对x求导:y+xy'+e^yy'=y'y/y'+x+e^y=1(2)(2)两边对x再求导一次:(y'y'-yy'')/y'^
f'x(x,y)=e^x(x+2y+y^2+1)=0f'y(x,y)=2e^x(1+y)=0解得x=0y=-1A=f''xx(x,y)=e^x(x+2y+y^2+2)=1B=f''xy(x,y)=2e
两边对x求导有y'e^y=1+y'整理有,y'=1/(e^y-1)
y=e^x/(x+1)y'=[e^x(x+1)-e^x]/(x+1)^2=xe^x/(1+x)^2
隐函数求导,两边同时求导,此题是对X求导!两边同时求导:y+xy'=e^x-y'y'=(e^x-y)/(x+1)由XY=e^X-y解出yy=e^x/x+1,带入上式y'=(e^x-y)/(x+1)=[
两边微分-sin(x+y)(dx+dy)+e^y*dy=0[e^y-sin(x+y)]dy=sin(x+y)dxdy=sin(x+y)dx/[e^y-sin(x+y)]
两边同时对X求导y+xy`=e^x+y`y`=(e^x-y)/(x-1)
这个题目要用到微分的形式不变性e^y*dy+d(xy)=0e^y*dy+xdy+ydx=0-ydx=(x+e^y)dydy=-y*dx/(x+e^y)
xy=e^(x+y)两边对x求导得y+xy'=e^(x+y)(1+y')y-e^(x+y)=[e^(x+y)-x]y'y'=[y-e^(x+y)]/[e^(x+y)-x]
y=[1'(1+e^x)-1(1+e^x)']/(1+e^x)^2=[0-e^x]/(1+e^x)^2=-e^x/(1+e^x)^2再问:谢谢。如果是:y=1/(1+e^-x)?再答:y'=[1'(1
两边求导,-sin(x+y)(1+y`)+e^yy`=1,dy=1+sin(y+x)/e^y-sin(x+y)dx再问:亲,这是正确的么?我是帮人问的==对的就给分了啊!
y'=6x-1+3e^x,y''=6+3e^x
xy=e^x-e^yd(xy)=d(e^x-e^y)xdy+ydx=e^xdx-e^ydy(x+e^y)dy=(e^x-y)dx则由dy/dx=(e^x-y)/(e^y+x)
就是原函数的值域
反函数的定义域就是原函数的值域.y=(e^x-1)/(e^x+1)=(e^x+1-2)/(e^x+1)=1-2/(e^x+1).(1)从上式观察,2/(e^x+1)不等于0,所以y不等于1.e^x>0
y'e^x+ye^x-ye^x=1y'e^x=1y'=e^(-x)y=-e^(-x)+c又x=0时y(0)-0=0+1y(0)=1所以1=-1+cc=2即解y(x)=-e^(-x)+2
(2^x)'=2^xln2(lnx)'=1/x(e^x)'=e^x希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
e^y-e^x=xy两边求导,得e^y*y'-e^x=y+xy'(e^y-x)y'=(e^x+y)所以y'=(e^x+y)/(e^y-x)x=0时,e^y-e^0=0,则e^y=1,则y=0所以y'(
e^(x+y)+sin(xy)=1e^(x+y)*(1+y')+cos(xy)(y+xy')=0y'*[e*(x+y)+xcos(xy)]=-[ycos(xy)+e^(x+y)]y'=-[ycos(x