y=2sinwx的图像在区间(-)只有一个极值点,则w的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:55:12
已知函数f(x)=2sinwx(w>0)在区间[-π/3,π/4]上的最小值是-2,则w的最小值等于多少?解析:∵函数f(x)=2sinwx(w>0)在区间[-π/3,π/4]上的最小值是-2函数f(
y=sinwx(w>0)在区间[0,1]上至少出现50次最大值0=
x∈[0,1]wx∈[0,w]依题意,在[0,+∞)上y=sinx的第50次最大值出现在x=49·2π+π/2=98.5π处所以,98.5π∈[0,w]所以,w≥98.5π于是,w的最小值为98.5π
y=sinwx(w>0)的周期为2π/w,当x=(4k-3)π/(2w)(k为整数)时,y出现最大值;根据提意:为了使函数在区间[0,1]上至少出现50次最大值,则必须:0≤(4k-3)π/(2w)≤
截取直线y=2,及y=-1所得的弦长相等且不为零,首先两条直线关于y=a对称,然后两条直线之间的距离的一半小于2倍的振幅即2A,可得a=0.5A>1.5
T=2∏/W由图像可以得到:(由于图像无法显示抱歉)49T+1/4T≤1代入解得:W≥197/2∏所以W最小值为197/2∏
提出w后x加6分之π
∵y=f(x)的图像过点(2π/3,0)∴sin(2wπ/3)=0∴2wπ/3=kπ(k∈Z)==>w=3k/2,k∈Zf(x)=sinwx在区间(0,π/3)上是增函数==>w>0由-π/2≤wx≤
为您提供精确解答设y=sinwx的最小正周期为T.则49T+T/4=197T/4
过(2π/3,0)点,说明w*(2π/3)是π的整数倍,设w*(2π/3)=n*π,n为正整数w=3n/2w可以等于3/2,3,9/2……-------------------------------
y=sinx在一个周期内有1个最小值3T/4+49T=13π/2w+49(2π/w)=1解得w=199π/2
函数y=sinwx(w>0)在区间[0,1]内恰好有50个最大值,求W的取值范围解析:∵函数f(x)=sin(wx)在区间[0,1]内恰好有50个最大值又函数f(x)初相为0,∴当x由0开始变化时,处
y=sinwx(w>0)的周期为2π/w,当x=(4k-3)π/(2w)(k为整数)时,y出现最大值;根据提意:为了使函数在区间[0,1]上至少出现50次最大值,则必须:0≤(4k-3)π/(2w)≤
周期T=2π/w,则[a,a+1]内至少要完成一个周期,即T=2π/w=1,w=2π
函数y=sinwx(w>0)在闭区间0到1内至少出现2次最大值wx=π/2,2π+π/2wx=2π+π/2x=1w的最小值=5/2π
他这样说不好理解,你可以从周期的定义入手.sinwx的周期是2pai/w,区间[a,a+1]上想象为一个长度为1的区间上,那如果要保证至少出现50次最大值,那周期应该怎么样呢?我们先在区间里面放了49
设y=sinwx的最小正周期为T.则49T+T/4=197T/4再问:为什么会有T/4?再答:49个周期里有49个最大值。如果有50个最大值,不必再多加一个周期,只加1/4个周期就行。再问:如果这样的
y=sinwx(w>0)在区间[0,1]上至少出现50次最大值0=
2kπ+π/2=w1令K=49则w=98π+π/2再问:答案为197∏/2……求过程再答:98π+π/2=197π/2再问:orz……好吧,我错了……不过为何k取49,w在这里是什么意思为什么写成2k