(1 x)n次方≧1 nx,n∈N
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:19:58
x^-n=1/x^n[1/(x+h)^n-1/x^n]/h=-{1/[(x+h)^nx^n]}[(x+h)^n-x^n]/hh→0[(x+h)^n-x^n]/h→nx^(n-1)(这个你肯定知道)1/
x=1时Sn=1+2+3+...+n是等差数列求和Sn=(1+n)*n/2=(n²+n)/2x≠1时Sn=x+2x²+.+nx^n利用错位相减xSn=x²+2x^3+.+
用逐差法,得f(x)=(1-x^n)/(1-x)^2+n*x^n/(1-x)再问:步骤是什么啊???再答:令原式=f(x);左右两边同时乘以x;即x*f(x)=x+2*x^2+3*x^3+...;则f
x=0或n=1时(1+x)^n=1+nx.x≠0,n>1时1+(1+x)+(1+x)^2+……+(1+x)^(n-1)=[(1+x)^n-1]/x,-2nx,综上,(1+x)^n>=1+nx.再问:请
这题的前提条件应该是n→∞吧如果是,就按下面方法:令f(x)=1+2x+3x^2+.+nx^n-1先对f(x)积分,再求导那么∫f(x)=x+x^2+x^3+……+x^n+c=[1/(1-x)]-1+
(1+x)^k>=1+kx,两边同乘(1+x)再问:为什么(1+x)^k>=1+kx这个则么推得?再答:(1+x)^k>=1+kx是数学归纳法的假设
令Sn=1+2x+3x²+...+nx^(n-1)则xSn=x+2x²+3x³+...+(n-1)x^(n-1)+nx^nSn-xSn=(1-x)Sn=1+x+x
楼上的证明没有错,一般的证明是用因式分解.详见下图,点击放大,再点击再放大.
首先你题目抄错了1+2x+3x^2+…+nx^n-1x=1时,Sn=1+2+3+...+n=n(n+1)/2x≠1时,Sn=1+2x+3x^2+...+nx^(n-1)xSn=x+2x^2+...+(
令S=x+2x^2+...+nx^nxS=x^2+2x^3+...+nx^(n+1)若x≠1则相减得(1-x)S=x+x^2+...+x^n-nx^(n+1)=[x^(n+1)-x]/(x-1)-nx
令:y=1+2x+3x^2+...+nx^(n-1)则:xy=x+2x^2+3x^3+...+nx^n(1-x)y=1+x+x^2+...+x^(n-1)-nx^ny=[1+x+x^2+...+x^(
Sn=1+2x+3x^2+…+nx^n-1xSn=x+2x^2+3x^3+...+(n-1)x^(n-1)+nx^n(1-x)Sn=(x+x^2+...+x^n-1)+1-nx^n=x(x^n-2)/
先讨论x是否为一,为一就不说了,不为一就楼上方法:首先式子两边先自乘一个x,再减去原来的式子.这时发现可以套用等比数列求和公式.再整理一下就可以了.Casex=1:Sn=(1+n)*n/2;Casen
S=1+2x+3x^2+...+nx^(n-1)--------(1)(1)式两边乘x得xS=x[1+2x+3x^2+...+nx^(n-1)]=x+2x^2+3x^3…+nx^n------(2)相
乘公比错位相减法乘X得到xSn=x+2x^2+3x^3…+nx^n相减得到(1-x)Sn=1+x+x^2+x^3…+x^(n-1)-x^n移项得到Sn=(1+x+x^2+x^3…+x^(n-1)-x^
1,(1+n)^n应该是,(1+x)^n吧当n=1时候等号成立假设n=k,等号成立,即有,(1+x)^k>=1+kx当n=k+1时,(1+x)^(k+1)=,(1+x)^k*(1+x)>=(1+kx)
当x=1时.Sn=1+2+3+.+n=(1+n)n/2当x>1时,Sn=1+2x+3x^2+.+nx^(n-1)xSn=x+2x^2+3x^3+.+nx^n两式相减,(1-x)Sn=1+x+x^2+.
先给出一种对于n是正整数的证明:设f(x)=x^nf'(x)=lim(Δx->0)(f(x+Δx)-f(x))/Δx=lim(Δx->0)((x+Δx)^n-x^n)/Δx=lim(Δx->0)(nΔ