y=arcsinx-2 3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:42:36
y=arcsinx-2 3
y=e^arcsinx 求dy

y=e^arcsinx求dy=e^(arcsinx)×1/√1-x²dx;如果本题有什么不明白可以追问,

函数y=sinx+arcsinx的值域是

arcsinx的定义域是[-1,1]而sinx在[-1,1]上是增函数所以,在-1上,sinx+arcsinx取最小值sin(-1)-pai/2=-sin1-pai/2在1上,sinx+arcsinx

为什么再求导Y=arcsinx时步骤是y’=(arcsinx)'=1/(siny)'?没看懂.

因为反函数的导数等于原函数导数的倒数

y=arctanx,arcsinx,arccosx,求导分别为什么?

1/(1+x^2)再答:1/(根号下1+x^2)再答:-1/(根号下1+x^2)

函数y=sinx+arcsinx的值域是______.

函数y=sinx+arcsinx的定义域为[-1,1],且在此定义域内单调递增,故当x=-1时,函数y=sinx+arcsinx有最小值-sin1+(-π2)=-sin1-π2.故当x=1时,函数y=

设y=arcsinx+lntanx,求dy/dx

dy/dx=1/√(1+x^2)+sec^2x/tanx再问:过程可以列举下吗?再答:一步就出来了啊,最基本的求导。dy/dx=1/√(1-x^2)+sec^2x/tanx

高数中y=arcsinx-1/2是什么意思

就是一个函数啊再问:什么函数?再答:随便一个函数,没有特殊意义再问:?

函数y=lnx+arcsinx的定义域为

正弦函数的值域就是它反函数的定义域,我们都知道sinx的值域是[-1,1],反推就知道y=arcsinx的定义域是[-1,1],结合lnx的定义域为x>0综合得定义域为(0,1]

如何求y=sin(arcsinx)的定义域?

arcsinx有意义,则x∈[-1,1];sinx有意义,x∈R;所以y=sin(arcsinx)的定义域为[-1,1]

y=arcsinx定义域为何是[-1,1]

反函数为y=sinx.值域为[-1,1],故原函数定义域为[-1,1]

y=arcsinx的图象特征和函数性质

性质:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2],奇函数

高数中,为什么y=arcsinx是单调函数,而y=Arcsinx却是多值函数?

y=Arcsinx它是y=sinx的反函数,关于y=x对称,则y=arcsinx的图像是立起来的,对于一个x在[-1,1],有无数个解和它对应,故是多值函数.

y=arcsinx的n阶导数怎么求?

一阶导1/√(1-X^2)然后继续将分母看成整体ww=√(1-X^2),二阶导成为1/w^2*(dw/dx)依次进行求导,将w带进去,化成完全是x的式子三阶导数可以此类推.

y=arcsinx 求导公式的推导过程

函数的导数等于反函数导数的倒数,y=arcsinx,则x=siny,求导为cosy,而,cosy平方+siny平方=1,于是cosy=根号(1-siny平方),即根号(1-x^2),所以y=arcsi

y=(根号1-x2)arcsinx导数

y=√(1-x²)*arcsinx,那么y'=[√(1-x²)]'*arcsinx+√(1-x²)*(arcsinx)'显然[√(1-x²)]'=-2x/2√(

求y=(arcsinx)^2的二阶导数

(arcsinx)'=1/√(1-x^2)y=(arcsinx)^2y'=2arcsinx/√(1-x^2)y''=[2/√(1-x^2)*√(1-x^2)-2arcsinx*(-x/√(1-x^2)

求函数y=tanx+arcsinx的值域

该函数单调递增值域为(tan(-1)-Pi/2,tan1+Pi/2)

求y=arcsinx+sinx的值域

定义域是[-1,1]此范围内arxsinx和sinx都是递增所以值域是[-π/2-sin1,π/2+sin1]