y=arctan√ex
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 09:04:16
设u=√(y/x)u'x=(-1/2)x^(-3/2)y^(1/2)u'y=(1/2)(xy)^(-1/2)那么原式变成了arctanu=(1/u^2)所以(u^2)arctanu=1两边取全微分得到
两边取正切y=tan(x+1)
y=e^(1/x)的反函数为y=1/(lnx)x>0
先求值域√x≥0所以0≤y<π/2y=arctan√xtany=√xx=tan²y即y=tan^2(x)(0≤x<π/2)
y=2x*arctan(y/x)y/x=2*arctan(y/x)u=y/xu=2*arctanu两边求解导数dy/dx=2arctan(y/x)+2x*1/((y/x)^2+1)*(1/x*dy/d
y=arctan(1-x)1-x=tany对x求导-1=y'sec²y所以y'=-1/sec²y=-cos²y=-cos²[arctan(1-x)]y'=-co
tan[arctan(-2)+arctan(-3)]=-2-3/1-6(用余切公式)=1所以arctan(-2)+arctan(-3)=45度或225度
对于这样的复合函数,求导就用链式法则,对各个函数逐个求导,在这里y=arctan(lnx),可以令lnx=t,那么y'=(arctant)'*t',显然(arctant)'=1/(1+t²)
即y/x=2arctan(y/x)令u=y/x,则u=2arctanu这实际是一个关于u的方程,可以证明这个方程是有解的,设u=c是方程的解(这时c已经是一个常数了)即u=y/x=c那么有y=cx所以
y'=1/[1+(1/x)^2]*(1/x)'=x^2/(1+x^2)*(-1/x^2)=-1/(1+x^2)
两边求导(y'x-y/x^2)/[1+(y/x)^2]=x+yy'/(x^2+y^2)^1/2整理y'x-y=(x+yy')(x^2+y^2)^1/2
差不多,但是有小区别.arctan(x/y)的范围是(-π/2,π/2)而arctan(x,y)的范围是(-π,π]http://www.cplusplus.com/reference/clibrar
对x求导1/√(x²+y²)*[1/2√(x²+y²)]*(2x+2y*y')=1/(1+y²/x²)]*(y'*x-y)/x²(
z'(x)=1/[1+(x^y)]*1/2√(x^y)*yx^(y-1)=yx^(y-1)/{2√(x^y)[1+(x^y)]}z'(y)=1/[1+(x^y)]*1/2√(x^y)*lnx*x^y=
y=4arctanxy'=4/(1+x^2)所以y'(1)=4/(1+1^2)=2
即0.5ln(x^2+y^2)=arctan(y/x)对x求导得到0.5(2x+2y*y')/(x^2+y^2)=1/(1+y^2/x^2)*(y/x)'即(2x+2y*y')/(x^2+y^2)=2
y'=1/[1+(x^2+1)^2]×(x^2+1)'=2x/(x^4+2x^2+2)再问:
定义域shR值域是是(-π/2,π/2)arctan(‐√3)=-π/3
原式化简为1/2ln(x^2+y^2)=arctany/x两边对x求导,得1/2×1/(x^2+y^2)×(2x+2yy')=1/[1+(y/x)^2]×(y'x-y)/x^2化简得y'=(x+y)/
因为点(x,y)和点(x,-y)关于x轴对称,所以y=-ex的图象与y=ex的图象关于x轴对称,故A和B错误;因为点(x,y)和点(-x,-y)关于原点对称,所以y=-ex的图象与y=e-x的图象关于