y=lintanx,求dy dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:17:42
方程两边求关x的导数ddx(xy)=(y+xdydx); ddxex+y=ex+y(1+dydx);所以有 (y+xdy
由微分方程dydx=2xy,得dyy=2xdx(y≠0)两边积分得:ln|y|=x2+C1即y=Cex2(C为任意常数)
y'=1/(1+x²)
你这个直接求积分吧用分步积分即可y=∫xe^xdx=∫xde^x=x*e^x-∫e^xdx=x*e^x-e^x+C(c为常数)
∵齐次方程y''-y'=0的特征方程是r2-r=0则特征根是r1=0,r2=1∴齐次方程的通解是y=(C1x+C2)e^x(C1,C2是积分常数)设原微分方程的一个特解是y=Ax2+Bx代入原微分方程
再答:希望采纳欢迎追问,再答:类似的你可以得到,看成y型区域的积分再问:谢谢~再答:不用谢,希望下次还能继续回答你的问题
∵齐次方程y''-y=0的特征方程是r²-1=0,则r=±1∴齐次方程y''-y=0的通解是y=C1e^t+C2e^(-t)(C1,C2是积分常数)∵设原方程的一个解为y=Asinx+Bco
方程两边对x求导得2x+y′x2+y=3x2y+x3y′+cosxy′=2x−(x2+y)(3x2y+cosx)x5+x3y−1由原方程知,x=0时y=1,代入上式得y′|x=0=dydx|x=0=1
y=lncosx-cosxy'=-sinx/cosx+sinxy=x^3lnxy'=3x^2lnx+x^2y''=6xlnx+3x+2x=6xlnx+5xf(x)=(1+cosx)xf'(x)=1-x
如果对x求导,则ln|x|=yln|y|,1/x=y'/y+yy'/y=y'/y+y',.对数求导法.如果对y求导,则ln|x|=yln|y|,x'/x=ln|y|+y/y,x'=y^y(1+ln|y
∵令y=xt,则y'=xt'+t代入原方程,得xt'+t=t/(t-1)==>xt'=(2t-t^2)/(t-1)==>(t-1)dt/(2t-t^2)=dx/x==>2dx/x+[1/t+1/(t-
我觉得你们都在浪费楼主的时间,就让我来解答这个问题吧:这是个不显含x的二阶方程.令p=y'那么原方程变成:pdp/dy=y把它们分开分别积分:pdp=ydyp^2/2=y^2+C1即:p^2=y^2+
特征方程r²-1=0r=±1y1=c1*e^xy2=c2*e^(-x)设特解yp=ax+byp'=a,yp''=0,代入方程0-(ax+b)=x-a=1=>a=-1b=0yp=-x通解为y=
令p=y'则y"=pdp/dy代入原式:pdp/dy+p=pydp/dy+1=ydp=(y-1)dy积分:p=(y-1)²/2+c1即dy/dx=(y-1)²/2+c12dy/[(
这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).
这题是y''-y'=f(x)的形式(常系数非齐次线性微分方程)要先解y''-y'=0的通解特征方程r^2-r=0解得,特征值r1=1,r2=0所以y''-y'=0的通解为Y1=C1e^(1*x)+C2
y=ln(sinx)y'=cosx/sinx=cotxy''=-1/sin²x∴y''=-1/sin²xdy=cotxdx
dydx要是等式才行吧.如果是的话,这句话就是求这个等式的根,用r表示x.
在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).