y=ln(x= 根号下1 x^2),则dy除以dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:46:20
y=ln(x= 根号下1 x^2),则dy除以dx
求y=ln(x+根号下(1+x^2))的奇偶性.

y(-x)=ln(-x+√(1+x^2))=ln[1/(x+√(1+x^2))]=-ln(x+√(1+x^2))=-y(x)所以是奇函数再问:麻烦你能不能在详细点啊谢谢!

求y=ln(x+根号下(1+x^2) )的反函数 求详细过程 谢谢!

解题思路:利用指数与对数的关系式以及反函数的概念来解答.解题过程:

y=ln[x+根号下(1+x^2)] 怎么求函数的奇偶性

先确定定义域,R,关于原点对称f(-x)=㏑(-x+√(1+(-x)²))=㏑(√(1+x²)-x)=㏑(1/(√(1+x²)+x))=-㏑(√(1+x²)+x

求导 高数 y=ln(x+根号下(1+x^2))

y=ln(x+根号下(1+x^2))y'=1/(x+根号下(1+x^2))*(x+根号下(1+x^2))'=1/(x+根号下(1+x^2))*(1+1/2*2x/根号下(1+x^2))=1/(x+根号

y =Ln(2x+根号下1+x平方)求导数

再问:还能在化简么再答:能,不过已经差不多了再答:你试试有理化再问:噢谢谢再答:不客气再问:再问:求教再答:再问:下面一题的dy怎么求啊再答:再问:你是老师么,建筑力学懂不懂再答:不懂再问:好的以后有

y=tan(ln根号下x^2-1)求导

再答:���Ϻ����

如何判断y=ln(x+根号下1+x^2)

y'=1/[x+√(1+x^2)]*[1+1/2√(1+x^2)*2x]=1/[x+√(1+x^2)]*[1+x/√(1+x^2)]=1/√(1+x^2)>0所以是增函数

求y=ln(x+根号下x^2+1)函数的导数

y'=1/(x+根号下x^2+1)*(x+根号下x^2+1)'=1/(x+根号下x^2+1)*(1+x/根号下x^2+1)=1/(x+根号下x^2+1)*(根号下x^2+1+x)/根号下x^2+1=1

y=ln(x+根号下x平方+2)求导

=[1+x/(x^2+1)^(1/2)]/[x+(1+x^2)^(1/2)]

复合函数y=ln(x-根号下x^2-1)求导

y'=1/[x-√(x^2-1)]×[1-x/√(x^2-1)]=1/[x-√(x^2-1)]×[(√(x^2-1)-x)/√(x^2-1)]=-1/√(x^2-1)

函数y=ln根号下(1+x^2)/(1-x^2)的导数是什么

y=1/2[ln(1+x^2)-ln(1-x^2)]y'=1/2[2x/(1+x^2)-(-2x)/(1-x^2)]=x/(1+x^2)+x/(1-x^2)=2x/(1-x^4)

求导:y=ln(x+根号下(1+x^2))

y'=1/(x+√(1+x²))*(x+√(1+x²)'(x+√(1+x²)'=1+1/[2√(1+x²)]*(1+x²)'=1+2x/[2√(1+x

y=ln[-x+根号下(x^2+1)]与y=-ln[x+根号下(x^2+1)]为什么表示的是同一个函

1)这两个函数对所有实数有定义;2)ln[-x+根号下(x^2+1)]=ln[1/(x+根号下(x^2+1))]=-ln[x+根号下(x^2+1)]

求函数y=根号下1+ln(x^2)+e^(2x)的导数,

y=根号下1+ln(x^2)+e^(2x)y′=1/2(1+ln(x^2)+e^(2x))ˆ(-1/2)(2/x+2e^(2x))=(2/x+2e^(2x))/2√(1+ln(x^2)+e^

求导:1:y=ln(1-x) 2:y=ln 1除以根号下1-x 3:y=ln根号下1-x 4:y=ln 1除以1-x

1,y=ln(1-x)y'=1/(1-x)*(1-x)'=1/(1-x)*(-1)=1/(x-1);2,y=ln[1/√(1-x)]=-ln√(1-x)y'=-1/√(1-x)*[√(1-x)]'=-

y=ln根号下(1+sin方x)

复合求导,先把ln后面的式子看成整体f(x),写成它的倒数,再乘以整体f(X)的导数

y=ln根号下X 求导

y=ln√x=(1/2)lnxy'=1/(2x)再问:d()=1/根号下xdx括号内填什么再答:dy=(1/√x)dxy=∫(1/√x)dx=2√x+C(C是一个常数)

z=ln(y-x^2)+.根号下1-y-x的定义域

y-x^2>01-y-x>=0所以x^2

求函数y=(根号下2x-x^2)/ln(2x-1)的定义域

由题意可得:x^2-2x02x-1不等于1联立解得1/2