Y=lnX服从正态分布 求X的均值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:08:29
在X与Y相互独立的条件下才可以说X-2Y也服从正态分布.其参数为(独立条件下)均值E(X-2Y)=EX-2EY=0方差D(X-2Y)=DX+4DY=10,即X-2Y服从N(0,10)
用卷积公式求得Z的概率密度函数,配方太麻烦所以提到最前面写.与x无关的项作为“系数”提到关于X的积分外面,然后构造关于x的正太分布密度函数积分,积分结果=1,积分号以外的“系数”就是要求的结果,为目标
问题1你计算一下Z的期望和方差就行因为正态分布两个参数的意义就是期望和方差,所以问一个随机变量是什么杨的正态分布其实就是问他的期望和方差是多少的问题问题2方差的性质如果XY相互独立则D(aX+bY)=
联合密度函数f(x,y)=f(x)*f(y)=(1/2π)e^[-(x^2+y^2)/2]画图可知(X为纵坐标,Y为横坐标)是的Z
利用随机变量函数的分布的公式可以求出.
FZ(z)=P{Z再问:可是答案是{Φ[(z+h-μ)/σ]-Φ[(z-h-μ)/σ]}/2h再答:我第一行做错了。FZ(z)=P{Z
设Y的分布函数为F(y),X的密度函数为g(x)则F(y)=P(Y
套公式即可.σ1^2=DX=16,σ2^2=DY=25.ρ=Cov(X,Y)/(σ1σ2)=0.6,√(1-ρ^2)=0.8.f(x,y)=(1/32π)e^{(-25/32)[x^2/16-3xy/
1,X的密度函数f(x)=1/√(2π)*exp(-x^2/2)2,设y>0P(Y≤y)=P(-√y≤X≤√y)=1/√(2π)*积分(-√y到√y)exp(-x^2/2)dx=2/√(2π)*积分(
首先,什么叫二维正态分布.2个高斯随机变量放在一起,叫高斯向量.何为2维,指的是两个向量关于实数域线性无关.(等价于covariance非退化)现在已知(U,V)线性无关,问经过一个线性变换后是否相关
因为E(X-Y)=E(X)-E(Y)=0,var(X-Y)=var(X)+var(Y)=1.
正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)
E(X)=∫(-∞,∞)e^y*(1/2π)^(1/2)*e^((y-u)/2)^2dy=e^(1/2+u)
由已知X服从均值为1、标准差(均方差)为2的正态分布,所以X−12~N(0,1),E(X)=1,D(X)=2;由Y服从标准正态分布,所以:Y~N(0,1),E(Y)=0,D(Y)=1;又X、Y相互独立
再问:为什么那里要加绝对值?再答:公式。针对单调增和单调减
fY(y)=1/(2π),y∈[-pi,pi],其他为0FZ(z)=P{Z再问:fZ(z)=∫(-π,+π)φ((z-y-u)/σ)/(2π)dy=[Φ((z+π-u)/σ)-Φ((z-π-u)/σ)