y=log1 2(-x2 2x 3)的单调区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:09:06
log(a)N=log(m)N/log(m)alog(12)5=lg5/lg12=lg(10/2)/lg(3x4)=(1-lg2)/(lg3+lg4)=(1-lg2)/(lg3+2lg2)=(1-a)
这是应用换底公式及对数的运算法则.log12(5)=lg5/lg12=lg(10/2)/(lg(2^2*3)=(lg10-lg2)/(2lg2+lg3)=(1-lg2)/(2lg2+lg3)=(1-a
要使函数有意义:log12(x2-1)≥0,即:log12(x2-1)≥log121可得 0<x2-1≤1解得:x∈[-2,-1)∪(1,2]故答案为:[-2,-1)∪(1,2]
令t=x2-1>0,求得x>1,或x<-1,故函数的定义域为{x|x>1,或x<-1},且y=log12t,故本题即求函数t在定义域内的减区间.再利用二次函数的性质可得函数t在定义域内的减区间为(-∞
由x2-3x+2>0得x<1或x>2,当x∈(-∞,1)时,f(x)=x2-3x+2单调递减,而0<12<1,由复合函数单调性可知y=log0.5(x2-3x+2)在(-∞,1)上是单调递增的,在(2
∵3x-a>0,∴x>a3.∴函数y=log12(3x-a)的定义域为(a3,+∞),∴a3=23,解得a=2故答案为:2.
由-x2+6x-8>0,得2<x<4,设函数y=log12(−x2+6x−8)=log12t,t=-x2+6x-8,则抛物线t=-x2+6x-8的对称轴方程是t=3.∴在抛物线t=-x2+6x-8上,
1,log12(3)=1/log3(12)=1/[1+2log3(2)]=a,log3(2)=1/(2a)-1/2.log3(8)=3log3(2)=3/(2a)-3/2.2,3^a=3x,3^b=3
log12(3)=a则log12(4)=log12(12/3)=log12(12)-log12(3)=1-alog根号12(16)=2log根号12(4)=4log12(4)=4(1-a)=4-4a
做一道题给你示范下吧,后面的相信你可以举一反三.第一题:a=ln27/ln12(化对同底数对数,一般以e为底)=3ln3/(2ln2+ln3)(分解成质数)于是得ln2/ln3=(3-a)/(2a)再
因为log12(3)=log3(3)/log3(12)=1/(1+log3(4))=n所以log3(4)=(1-n)/n所以log12(4)=log3(4)/log3(12)=log3(4)/(1+l
由x−1>02−x≥0,解得1<x≤2,∴函数f(x)的定义域为(1,2].又∵函数y1=log12(x-1)和y2=2−x在(1,2]上都是减函数,∴当x=2时,f(x)有最小值,f(2)=log1
要使y=log12(x+3)(2−x)有意义,需(x+3)(2-x)>0即(x+3)(x-2)<0,解得-3<x<2;由ex-1≥1,得x-1≥0,即x≥1.所以A={x|-3<x<2};B={x|x
令t=x2-5x+6=(x-2)(x-3)>0,可得x<2,或x>3,故函数y=log12(x2-5x+6)的定义域为(-∞,2)∪(3,+∞).本题即求函数t在定义域(-∞,2)∪(3,+∞)上的增
log12(27)=3log12(3)=3lg3/(2lg2+lg3)=a====>lg3=[2a/(3-a)]lg2log6(16)=4lg2/(lg2+lg3)=4lg2/[1+[2a/(3-a)
log2(3)=lg3/lg2,log2(3)=m所以lg3/lg2=m.log12根号54=1/2lg(3^3*2)/lg(3*2^2)=1/2(3lg3+lg2)/(lg3+2lg2)将1/2(3
∵t=x2-6x+17=(x-3)2+8≥8∴内层函数的值域变[8,+∞) y=log12t在[8,+∞)是减函数, 故y≤log128=-3∴函数y=log12(x2
令u=|x-3|,则在(-∞,3)上u为x的减函数,在(3,+∞)上u为x的增函数.又∵0<12<1,y=log12u是减函数∴在区间(3,+∞)上,y为x的减函数.故答案为:(3,+∞)
第一题:后面log1=0,所以前者不等于后者第二题:后面log3*log12=log3*(log6+log2)=log3*log6+log3*log2.又因为log2=1,所以愿式=log3*log6
∵函数y=log12(x2-3x+2),∴x2-3x+2>0,解得x<1,或x>2.∵抛物线t=x2-3x+2开口向上,对称轴方程为x=32,∴由复合函数的单调性的性质,知:函数y=log12(x2-