y=sinx cosx=2(x属于(0,2 π))

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:06:28
y=sinx cosx=2(x属于(0,2 π))
求函数y=cos方x+sinxcosx的值域

解题思路:考查三角恒等变换解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/read

求函数y=sin²x+2sinxcosx+3cos²x的值域

y=sin²x+cos8x+2sinxcosx+2cos²x=1+sin2x+(1+cos2x)=sin2x+cos2x+2=√2sin(2x+π/4)+2-1

求函数y=sinxcosx-cos^2x的最大值

y=sinxcosx-cos^2x=1/2sin2x-1/2(1+cos2x)=1/2(sin2x-cos2x-1)=1/2[√2*sin(2x-派/4)-1]=√2/2*sin(2x-派/4)-1/

求函数y=cos²x-sin²x+2sinxcosx值域

y=cos²x-sin²x+2sinxcosx=cos2x+sin2x=√2(√2/2cos2x+√2/2sin2x)=√2sin(2x+π/4)所以可得此函数的值域为:[-√2,

y=sin²x+2sinxcosx+3cos²x ,x属于R

y=1+sin(2x)+2cos^2(x)=1+sin(2x)+1+cos(2x)=2+sin(2x)+cos(2x)=2+√2sin(2x+π/4)所以周期为π2.-π/2+2kπ

已知函数y=sin^2x+sinxcosx+2,(x属于R),求值域

y=(1-cos2x)/2+(sin2x)/2+2=1/2(sin2x-cos2x)+5/2=√2/2sin(2x-π/4)+5/2因此y的最大值为:√2/2+5/2,最小值为-√2/2+5/2值域即

已知函数y=g(x)=sinx+cosx+2sinxcosx

分析:由(sinx)^2+(cosx)^2=1进行解析如下,1.y=g(x)=a(sinx+cosx)+2sinxcosx,当a=1时,g(x)=sinx+cosx+2sinxcosx=sinx+co

已知函数y=2cosxsin(x+π/3)-根号3 *(sin^2) x +sinxcosx

y=2cosxsin(x+π/3)-根号3*(sin^2)x+sinxcosx,后两项先提出一个sinx,然后括号内部分用叠加原理,得到y=2cosxsin(x+π/3)+2sinxcos(x+π/3

求y=sin平方x+2sinxcosx的周期

y=sin^x+2sinxcosx=1/2-cos2x/2+sin2x=根号下(5/4)*[2sin2x/根号5-cos2x/根号5]+1/2设cosa=2/根号5,sina=-1/根号5上式=根号下

y=2sinXcosX的结果是多少

解题思路:利用三角函数正弦的和公式sin(x+x)可得结果解题过程:解:因为sin2x=sin(x+x)=sinxcosx+cosxsinx=2sinxcosx,所以y=2sinxcosx=sin2x

已知函数y=sin²x+2sinxcosx-3cos²x,x∈R

y=sin²x+2sinxcosx-3cos²x=(sin²x+cos²x)+2sinxcosx-4cos²x=1+sin(2x)-2[1+cos(2

y=sin^2x-根号3sinxcosx-cos^2x化简

y=-(cos²x-sin²x)-√3sinxcosx=-cos2x-(√3/2)sin2x=-sin(2x+π/6)或者y=-(cos²x-sin²x)-√3

y=1/2cos^2x+sinxcosx+3/2sin^2x 求单调区间

hiy=1/2cos^2x+sinxcosx+3/2sin^2x=1/2*((1+cos2x)/2)+1/2*sin2x+3/2*((1+cos2x)/2)=1/2*sin2x-1/2*cos2x+1

求y=cos²x+2根号3sinxcosx-sin²x的最大值、最小值.

y=cos²x+2√3sinxcosx-sin²x=cos²x-sin²x+2√3sinxcosx=cos2x+2√3sinxcosx=cos2x+√3sin2

函数y=cos^X-sin^x+2sinxcosx的最小值是?

y=cos2x+sin2x=根号2*sin(2x+pai/4)故y(min)=-根号2

已知函数y=sin²x+sinxcosx+2(x∈R),求函数的值域

y=sin²x+sinxcosx+2=(1-cos2x)/2+(sin2x)/2+2=(1/2)(sin2x-cos2x)+5/2=(1/2)*√2(sin2xcosπ/4-cos2xsin

已知函数y=cos²x-sin²x+2sinxcosx,求函数值域

y=cos²x-sin²x+2sinxcosx=cos2x+sin2x=√2sin(2x+π/4)所以值域为【-√2,√2】

求函数y=7-8sinxcosx+4cos^2x-4sin^x的最小值

y=7-4sin2x+4cos2x=7+4√2cos(2x+π/4),y的最小值=7-4√2.