y=sinx与x轴所围成的图形绕y轴旋转所产生的旋转体的体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:56:44
y=sinx与x轴所围成的图形绕y轴旋转所产生的旋转体的体积
求曲线方程y=sinx,0≤ x≤π与y=0所围成的图形绕y轴旋转一周所得的旋转体的体积

你还是说绕哪个轴旋转的体积怎么算?如果是绕Y轴旋转,你可以先画出图形,是一个中心凹陷、中间凸起、边缘光滑过度的一个东东,它的体积有两种算法:一种是微薄片圆筒法求积,沿半径方向从0积到π,就是你写出来的

求由Y=sinx(0≤x≤π)与X轴所围成图形绕X轴旋转一周而成的立体的体积.

上限:π下限:0V=∫(πsin²x)dx=0.5∫π(1-cos²x)dx=0.5π²

求文档: 求曲线y=sinx,y=cosx与直线x=-π/4,x=π/4所围成图形的面积

当x∈[-π/4,π/4]时,有cosx>sinx∴A=∫(cosx-sinx)dx积分限为[-π/4,π/4]=sinx+cosx=[sin(π/4)+cos(π/4)]-[sin(-π/4)+co

曲线y=|cosx|与y=sinx(0≤x≤π)及x轴所围成的封闭图形面积S等于?

2√2-2,应该是再问:求过程再答:先画出在定义域内的图形,y=|cosx|,的图象要翻上去,图像关于x=π/2对称,看一半就行了。在0到π/2内,图像交点横坐标是π/4π/2,π/4(sinx-co

求在区间[0,π/2]上曲线y=sinx与直线x=π/2,y=0所围成的图形绕y轴旋转产生的旋转体的体积

所求旋转体的体积可看成是由直线x=π/2,y=1,x轴与y轴共同围成的图形绕y轴旋转产生的旋转体体积V1与由直线y=0,曲线y=sinx与y轴所围成的图形绕y轴旋转产生的旋转体体积V2这两者的差值V1

求曲线y=sinx(0≤x≤π)与x轴所围成的图形的面积

S=ʃ(0≤x≤π)sinxdx=-cosx|(0≤x≤π)=-(cosπ-cos0)=2

曲线y=sinx,直线y=x,x=π/2所围成图形的面积为

x=0,y=0x=π/2,y=1因此面积可化为定积分∫[0,π/2](x-sinx)dx=(x^2/2+cosx)[0,π/2]=π^2/4-1

计算正弦曲线y=sinx,[x∈(0,∏)]与x轴围成的图形绕y轴旋转所成的旋转体的体积

这道题是这样子的:因为反函数的话原函数必须是单射,所以说对于sin(x)而言,反函数的一般区间是[-pi/2,pi/2],所以OB这一段没问题,但是对于AB这一段而言,x属于[pi/2,pi],于是x

曲线y=sinx与x轴所围成的封闭区域的面积为

什么范围啊?如果是x属于R则因为sinx是奇函数,关于原点对称所以面积是0

求y=sinx(0≤x≤派)与x轴所围成图形绕x轴旋转一周后所得到立体的体积.

图形是半圆,最高点是1,所以半径为1.用公式4/3pir^3,得到答案4/3pi.再问:能写出解答过程麽,亲,这是考试题,我要求过程~~~~(>_

求由y=sinx,y=cosx所围成图形绕x轴旋转一周所得旋转体体积.

首先必须指出:他们若不加限制,则答案为“无限大”.题目应该写明【四分之一周期】的图像旋转生成的立体图形的体积.就是图中任一个色块构成的旋转体体积.有常用的体积公式.我写了思路,你自己是否可以解决啦?&

函数y=sinx于2x-πy=0所围成的图形的面积最接近

答案为C.解:曲线y=sinx与直线2x-πy=0都相对原点对称,交于两点(-π/2,-1)及(π/2,1)两线在第一象限围成的面积是:∫(0到π/2)(sinx-2x/π)/dx=(-cosπ)|(

求在区间[0,π/2]上曲线y=sinx与直线x=π/2,y=0所围成的图形绕y轴旋转产生的旋转体的拜托各位了 3Q

所求旋转体的体积可看成是由直线x=π/2,y=1,x轴与y轴共同围成的图形绕y轴旋转产生的旋转体体积V1与由直线y=0,曲线y=sinx与y轴所围成的图形绕y轴旋转产生的旋转体体积V2这两者的差值V1

求由曲线y=sinx与x轴所围成图形绕y轴旋转所得体积,0=<x

绕y轴旋转所得体积=∫2π*x*sinxdx=2π∫x*sinxdx=2π[(-x*cosx)│+∫cosxdx](应用分部积分法)=2π[π+(sinx)│]=2π(π+0)=2π²

曲线y=sinx及直线x=-π/2,x=π/2与轴所围成平面图形的面积

如图所示:与x轴所围成平面图形的面积=π

曲线y=sinx在区间[0,兀]范围内与x轴所围成的平面图形的的面积是?

由于y=sinx在[0,π]上大于零.因此这个平面图形的面积就等于y=sinx在y=sinx在[0,π]上的定积分.根据微积分基本定理且y=-cosx的导数为y=sinx,可得:S=-cosπ-(-c