y=sin^2x 2sinxcosx-3cos^2x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:48:26
sin^2(x-y)+sin^2(y-z)+sin^2(z-x)=[1-cos2(x-y)+1-cos2(y-z)+1-cos2(z-x)]/2=3/2-[(cos2xcos2y+sin2xsin2y
x=0:0.01:1;y=0;fori=1:20y=y+sin(i*x);endplot(y);
sin(x+y)sin(x-y)=-1/2(cos(x+y+x-y)—cos(x+y-x+y))=-1/2(cos2x—cos2y)=-1/2(1-2(sinx)^2-1+2(siny)^2)=(si
y=cos²xsinxy²=cos²xcos²xsin²x=1/2(cos²xcos²x*2sin²x)≤1/2*[(2
tan,正切;sin,正弦;cos,余弦tan(x+y)tan(x-y)=sin(x+y)/cos(x+y)*sin(x-y)/cos(x-y)=sin(x+y)sin(x-y)/[cos(x+y)c
左边=(sinxcosy+cosxsiny)(sinxcosy-cosxsiny)=sin²xcos²y-cos²xsin²y=sin²x(1-sin
dy/dx相当于对x进行求导:dy/dx=y'=2x*cos[sin(x^2)]*cos(x^2)由于:sinx=cosx,sin(x^2)=2x*cos(x^2)
y'=(cos²x)'-(sin3^x)'=2cosx·(cosx)'-cos3^x·(3^x)'=2cosx·(-sinx)-cos3^x·(3^x·ln3)=-sin2x-ln3·cos
sin^2x+cos^2y=1/2∴sin^2x=1/2-cos^2y3sin^2x+sin^2y=3(1/2-cos^2y)+sin^2y=1.5-3cos^2y)+sin^2y又有sin^2y+c
sinx+siny+sinz-sin(x+y+z)=4sin[(x+y)/2]sin[(x+z)/2]sin[(y+z)/2]sinx+siny+sinz-sin(x+y+z)=2sin[(x+y)/
-2k=cos2x-cos2y=[2(cosx)^2-1]-[2(cosy)^2-1]=2[(cosx)^2-(cosy)^2]cos^2x-cos^2y=-k
(1)当y=C时,sin[(x+C)/2]=sin[(x-C)/2]移项,和差化积有2cos{[(x+C)/2+(x-C)/2]/2}sin{[(x+C)/2-(x-C)/2]/2}=0,即cos(x
对这样的隐函数求导数的时候,就把y看作x的函数,y对x求导就得到dy/dx所以原等式对x求导得到2xy²+x²*2y*dy/dx+siny+x*cosy*dy/dx=0于是化简得到
x=(x+y)/2+(x-y)/2y=(x+y)/2-(x-y)/2所以左边=cos[(x+y)/2+(x-y)/2]-cos[(x+y)/2-(x-y)/2]={cos[(x+y)/2]cos[(x
过程:先将括号里的当作一个整体,即求sinx的导数,所以是cos(2x+30度),再对括号里的求导,所以得2由复合函数的求导法则,知y=2cos(2x+30度)
y=sin(π2+x)cos(π6-x)=cosx(32cosx+12snx)=32cos2x+12sinxcosx=34(1+cos2x)+14sin2x=12sin(2x+π3)+34∴T=2π2
前三题其实就是和差化积的公式,4因为tan2a=2tana/(1-tan^2a)sin2a=2tana/(1+tan^2a)所以左边=2tana/(1+tan^2a)-√3cos2a.先消去一个tan
y'=2e^2xcos(e^2x)把y看成复合函数sint,t=e^m,m=2x.复合函数求导,等于三个分别求导的积
sin^2x+sin^2y-sin^2x*sin^2y+cos^2x*cos^2y=sin^2x-sin^2x*sin^2y+sin^2y+cos^2x*cos^2y=sin^2x*(1-sin^2y