y=x,y=x²的二重积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:25:45
y=x,y=x²的二重积分
求二重积分e^[(x-y)/(x+y)]dxdy,积分区域为x=0,y=0,x+y=1所围成的区域

这题要用到二重积分的换元法……设x-y=u,x+y=v,得x=(v+u)/2,y=(v-u)/2,则在此变换下,积分区域边界曲线化为了v=1,u=2v,u=-v,新的积分区域为D'={(u,v)|0≤

求二重积分,被积函数是e……(y/x+y),积分区域是x+y=2,x轴,y轴围成的三角形内.

选用极坐标系,积分区域D:0≤θ≤π/2,0≤r≤2/(sinθ+cosθ)I=∫[0,π/2]dθ∫[0,2/(sinθ+cosθ)]e^[sinθ/(sinθ+cosθ)]*rdr=∫[0,π/2

已知二重积分区域D由直线y=x,圆x^2+y^2=2y,以及y轴围成,求二重积分∫∫xydxdy

用极坐标,x²+y²=2y的极坐标方程为:r=2sinθ∫∫xydxdy=∫∫r³cosθsinθdrdθ=∫[π/4→π/2]cosθsinθdθ∫[0→2sinθ]r

计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1

用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2

利用二重积分求y=x+1与y^2=1-x所围成平面区域的面积

直线y=x+1与抛物线y^2=1-x的交点满足这两个方程:y=x+1,y^2=1-x解得两个交点为:(0,1),(-3,-2).所以,直线y=x+1与抛物线y^2=1-x围成的区域为D:-2

计算二重积分xysin(x+y) 积分区域x=0 y=0 x+y=π/2

[-x*cos(x+y)]'=x*sin(x+y)-cos(x+y)x*sin(x+y)=cos(x+y)-[x*cos(x+y)]'以上是对x求导的结果.把y暂看作常数.二重积分,可以先把y看作常数

二重积分高数题二重积分:∫d∫xydxdy D:y=x y=x/2 y=2 所围成的面积 计算出来 看看

观察图像可确定:原积分变为§(0,2)dy§(y,2y)xydx=§(0,2)ydy[x^2/2|(y,2y)]=§(0,2)[3y^3/2]dy=(3y^4/8)|(0,2)=6

∫∫(y/x)^2dxdy,D为曲线y=1/x,y=x,y=2所围成的区域计算二重积分

原式=∫dy∫(y/x)²dx=∫y²dy∫(1/x²)dx=∫y²(y-1/y)dy=∫(y³-y)dy=(y^4/4-y²/2)│=2^

怎么用二重积分的几何意义确定二重积分∫∫(a^2-x^2-y^2)^0.5 dxdy,其中D:x^2+y^2=0,y>=

被积函数z=√[a²-x²-y²],积x²+y²+z²=a²的上半个球面.注意D:x^2+y^2=0,y>=0∫∫(a^2-x^2

计算二重积分 ∫∫cos(x+y)dxdy D={(x,y)|0

∫∫cos(x+y)dxdy∫dx∫cos(x+y)dy,x的上下限是π和0,y的上下限是π和0∫dx∫dsin(x+y)=∫[sin(π+x)-sinx]dx=∫-2sinxdx=2∫dcosx,x

利用二重积分计算由y^2=2x,y=x所围成的闭区域的面积

∫(0~2)dy∫(y^2/2~y)dx=∫(0~2)(y-y^2/2)dy=2/3

计算二重积分(X*X+Y*Y)dxdy,其中是由X*X+Y*Y=4围成的闭区域

作一个极坐标变换r=根号(x^2+y^2)w=arctan(y/x)则原积分变为了\int_{0,2}dr\int_{0,2pi}dwr^3=8pi看一下你的高数书上关于极坐标那一块.

求高数二重积分做法二重积分e^(x+y)dt D={(X,Y) /X/+/y/

关键是积分区域的处理! 另外膜拜一下一楼,这个题目也能用极坐标?

二重积分,老算不对,下面2题求f(x,y)的二重积分1.f(x,y)=根号(R^2-x^2-y^2),区域 x^2+y^

设x=rcosa,y=rsina;原式=∫∫f(x,y)dS=2∫da∫√(R^2-r^2)rdr=2∫(R^3-(sina)^3)/3da=[R^3(pi-4/3)]/3上式中r的范围是0——Rco

将直角坐标系下的二重积分化为极坐标下的二重积分:∫dx∫f(x,y)dy=

积分区域:y=0和y=√(2x-x²)围成的区域化为极坐标:∫dθ∫f(rcosθ,rsinθ)*rdr再问:图不是个半圆吗为什么不是∫再答:画图看看就知道了是第一象限的半圆

求二重积分∫x√ydxdy,D:y^2=x,y=x^2所围成的区域

原式=∫xdx∫√ydy(自己作图分析)=(2/3)∫x(x^(3/4)-x³)dx=(2/3)∫(x^(7/4)-x^4)dx=(2/3)(4/11-1/5)=6/55.

求二重积分:∫∫((根号x)+y)dxdy,其中D是由y=x,y=4x,x=1所围成的平面区域

∫∫(√x+y)dxdy=∫dx∫(√x+y)dy=∫(15/2)x²dx=(5/2)x³|=5/2