y=x²sinx導數
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:44:50
y'=(1+cosx)tanx+(x+sinx)sec²x=tanx+sinx+xsec²x+tanxsecx
e^x和括号里的分别求导y'=e^x(cosx+sinx)+e^x*(-sinx+cosx)=2cosx*e^x()里看成是e^x的系数
y′=[2x(sinx)′-(2x)′sinx]/(2x)²=(2xcosx-2sinx)/(4x²)=(xcosx-sinx)/(2x²)
你粉色图片上的答案是正确的
详细解答请见图片,点击放大,再点击再放大.
知道“对数求导法”吗?可以取对数再求导数.或者下面的方法,用到复合函数求导:y=(sinx)^x=e^【ln[(sinx)^x]】=e^【xln(sinx)】DY/DX=e^【xln(sinx)】*[
可以采取对数求导由y=(sinx)^x得lny=ln(sinx)^x=xln(sinx)两边求导得到1/y*y'=ln(sinx)+x*cosx*1/sinx所以得到y'=(sinx)^x*ln(si
它的原函数不是初等函数,所以不能用一个函数的形式表示出来,不过可以用幂级数的形式表示
此函数没有反函数互为反函数的两个函数的自变量与因变量应一一对应.而当x=k*pi(k是整数)时y=x^sinx=1,也就是说一个y对应多个x.
最快的是用导数..y'=1+cosx>=0恒成立即此函数在R上单调递增,故不满足周期函数的条件(存在T使f(x)=f(x+T)恒成立)所以它不是周期函数..用定义也可以,就是过程麻烦些..
y=x^(sinx)lny=sinxlnx(1/y)*y'=cosxlnx+sinx*1/xy'=(cosxlnx+sinx/x)y=(cosxlnx+sinx/x)*x^(sinx)
不对的,应该是这样的:y=x^sinx二边同时取对数,得到:lny=sinxlnx再对X求导得到:y'*1/y=cosxlnx+sinx*1/x即y'=y[cosxlnx+sinx/x]=x^sinx
(-x^2*sinx-2x*cosx+2sinx)/(x^3)再问:可以具体一点儿吗再答:(sinx/x)'=(x*cosx-sinx)/(x^2)(sinx/x)''=[(cosx-x*sinx-c
y=x^sinx两边取对数lny=ln(x^sinx)=sinx*lnx然后两边对x求导(注意y是关于x的函数,所以lny其实是一个复函数)(1/y)*y'=cosx*lnx+sinx/x即y'/y=
y=x/sinx+sinx/xy'=(sinx-xcosx)/sin²x+(xcosx-sinx)/x²
对(sinx)^x求导,设t=(sinx)^x,则lnt=xlnsinx,t'/t=lnsinx+xcotx,将t=xlnsinx代入得t'=(sinx)^x(lnsinx+xcotx),所以y'=1
y=[x/(1+x)]^sinxlny=sinx[lnx-ln(1+x)](1/y)·y'=cosx[lnx-ln(1+x)]-sinx[1/x-1/(1+x)]=cosxln[x/(1+x)]-[1
用公式:y=u(x)×v(x),则y'=u'v+uv'y=f(u),f(u)=u(x),则y'=f'(u)×u'(x)y'=cosx/x+sinx×(-1/x^2)+1/sinx+x(-1/(sinx
y=(2sinx-1)/(sinx+3)=(2sinx+6-7)/(2sinx+6)=1-7/(2sinx+6)whensinx=1ymax=1/8whensinx=-1ymin=-3/4y的值域是(
y'=f'(x+sinx)(1+cosx)y''=f''(x+sinx)(1+cosx)^2+f'(x+sinx)(1-1/1+x^2)=f"(x+sinx)(1+cosx)^2+f'(x+sinx)