y=根号x-1绕x轴旋转面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:37:30
V=(1/3)π×1^2×1+π∫(1,2)(1/x)^2dx=(1/3)π+π(-1/x)(1,2)=(1/3)π+(1/2)π=(5/6)π再问:能写下详细的解题过程么,带文字的讲解、再答:这就是
y = √xy = 2 - x√x = 2 - x平方:x² - 5x
对于y轴,面积A由x=√y及x=1围成A=∫(0到1)(1-√y)dy(y-2/3*y^3/2)(0到1)=1-2/3=1/3绕y轴旋转所得的体积Vy=π∫(0到1)dy-π∫(0到1)(√y)^2d
设A(x1,y1,z1)为x/2=y=-(z-1)上的任意点,其关于x轴的对称点为A'(x,y,z).易知:x=x1,y1=(x1)/2,z1=1-(x1)/2,y+z=y1+z1→2(y+z)=x-
音不大“六哥,我现在的这个样子,平静吗
利用定积分的几何意义:S=x^2在[1,2]上的定积分=(x^3)/3在x=2与x=1处的函数值之差=7/3旋转体的体积计算公式:V=π×[(x^2)^2]在[1,2]上的定积分=π×[(x^5)/5
(1)设:X=x/a,Y=y/bS=∫∫dxdy(其中x从-a到a,y从-b到b)=ab∫∫dXdY(其中X从-1到1,Y从-1到1)=ab*半径为1的圆的面积=πab设:椭球方程x^2/a^2+y^
非常可惜,一楼积分积错了.请参见图片,点击放大.如不清楚,可以放大荧屏,或将点击放大后的图片临时copy下来,会非常清晰:
绕x轴旋转一周所得的体积=∫π(x²/4)dx-∫π(x-1)dx=[(π/12)x³]│-[π(x²/2-x)]│=(π/12)(2³-0³)-π(
y=根号x与直线x=1,x=4,y=0围成的平面图形绕Y轴旋转所得旋转的体积:2π∫xydx=2π∫x^3/2dx=4π/5∫dx^5/2积分上限是4,下限是2所以体积是124π/5
如图:所得旋转体的面积=82.42. 旋转体体积=9.16请核对数据无误后再采纳.
先求所得旋转体的体积.在X轴上距离原点x处取一微元dx.y=sinx在x到x+dx之间与x轴之间形成一矩形条,将该矩形条绕x轴旋转得旋转体在x到x+dx之间的体积元素,即一个圆柱体,体积=∫π(sin
提示令1+cosx=tdt=-sinx*dx原式=-k(根号下t)*dt(k是代表前面那一堆,因为不好打所以用k代替)这样就好求了得到:-k(1+cosx)的二分之三次方+c然后把0和π代入作差求绝对
/>y=x²与y=√x联立得交点x1=0,x2=1,S=∫【0到1】(√x-x²)dx=(2/3x^3/2-1/3x^3)|【0到1】=2/3-1/3=1/3,V=∫【0到1】π[
由曲线y=根号x与直线x=1及x轴所围成的图形,绕x轴旋转所得的旋转体的体积.V1=∫pi*y^2dx从0到1=∫pi*xdx从0到1=pi*x^2/2|从0到1=pi(1-0)/2=pi/2由曲线y
y=e^x和y=e^(-x)的交点为(x,y)=(0,1)平面图形的面积S=∫{x=0→1}[e^x-e^(-x)]dx=∫{x=0→1}de^x+∫{x=0→1}de^(-x)=e^x|{x=0→1
所求面积=∫x²dx+∫(2-x)dx=(x³/3)│+(2x-x²/2)│=1/3+1/2=5/6;所求体积=∫πx^4dx+∫π(2-x)²dx=π(x^5
积分符号0—4√xdx-1/2x2x2=10/3(πx积分符号0—4xdx)-1/3xπx4x2=16π/3