y=根号x-2-根号4-2x-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:00:24
解∵x+2y≥0∴√(x+2y)×√(2x+4y)=√2√(x+2y)²=√2(x+2y)
y=根号(x-8)+根号(8-x)+18,x-8≥0,8-x≥0x=8,y=18[(x+y)/(根号x+根号y)]-2xy/(x根号y-y根号x)=26/(2√2+3√2)-288/(8*3√2-18
题是这样的吧:[(√x-√y)^3+2x√x+y√y]/(x√x+y√y)+[3√(xy)-3y]/(x-y)原式=[(x√x-3x√y+3y√x-y√y)+2x√x+y√y]/(x√x+y√y)+[
根号内必须大于等于0故有x-1≥0且1-x≥0即x≥1且x≤1所以x=1将x=1代回去得y=3然后将x,y代入所求式即可你的所求式表述不是很清楚,所以没办法帮你求了
因为4x^2+9y^2-4x-6y+2=0,所以4x^2-4x+19y^2-6y+1=0,(2x-1)^2+(3y-1)^2=0所以2x-1=0,3y-1=0,所以x=1/2.y=1/3所以根号y/(
根号(x+y-8)+根号(8-x-y)=根号(3x-y-4)+根号(x-2y+7),根据二次根式有意义得:X+Y-8≥0,8-X-Y≥0,∴X+Y≥8,X+Y≤8,∴X+Y=8,左边为0,右边两个非负
(x√x+x√y)/(xy-y^2)-[x+√(xy)+y]/(x√x-y√y)=[x(√x+√y)/[y(√x-√y)(√x+√y)]-[x+√(xy)+y]/{(√x-√y)[x+√(xy)+y]
平方根下的数必须大于等于0,所以X=4,所以Y=2,所以答案=4*2^3=32
结果为根号下x+根号下y解2xy/(x根号下y+y根号下x)分母提公因式根号下xy然后前后两式分母都含根号下x+根号下y合并后约分得根号下x+根号下y
(根号y/根号x-根号y)-(根号y/根号x+根号y)={根号y(根号x+根号y)}/(x-y)-{根号y(根号x-根号y)}/(x-y)=(y+y)/(x-y)因为x=2y所以原式=2y/y=2
原式=[(√x-√y)²+(√x+√y)²]/(√x+√y)(√x-√y)=(x+y-2√xy+x+y+2√xy)/(x-y)=2(x+y)/(x-y)=2(2+√3)/(2-√3
|x|=根号3-根号2|y|=根号2当x,y同时为正时x=根号3-根号2y=根号2x+y=根号3题意x+y≠根号3所以不可能同时为正.当x正,y为负时x=根号3-根号2y=-根号2x+y=根号3-2根
((x-y)/(√x+√y))-(x+y-2√xy)/(√x-√y),分母有理化,第一个式子分母乘以√x-√y,又(x+y-2√xy)=(√x-√y)(√x-√y),所以原式等于√x-√y-(√x-√
因为几个非负数的和为0时必有每个非负数都为0.而一个数的算术平方根是非负数,所以√(2x+3)+√(4y-6x)+√(x+y+z)=0时,有√(2x+3)=0且√(4y-6x)=0且√(x+y+z)=
y=x/2-√(x-2)+2√(2-x)被开方数大于等于0x-2≥0且2-x≥0x≥2且x≤2所以x=2y=1√(4x+y)-√(x²+5y)=√(4*2+1)-√(2²+5)=0
原式=√y/(√2y-√y)-√y/(√2y+√y)=√y/[√y(√2-1)]-√y/[√y(√2+1)]=1/(√2-1)-1/(√2+1)=(√2+1)/(√2+1)(√2-1)-(√2-1)/
求函数的定义域可知:x-2≥0,2-x≥0,可知,x=2则y=根号x-2+根号2-x+3/4=3/4,∴xy=2×3/4=3/2
[x+2√(x-1)]=[√(x-1)+1]^2[x-2√(x-1)]=[√(x-1)-1]^2x-1>=0x>=1y=√[x+2√(x-1)]+√[x-2√(x-1)]=√(x-1)+1+|√(x-