y^2-2xy 9=0方程所确定的隐函数的导数dy dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:03:54
y^2-2xy 9=0方程所确定的隐函数的导数dy dx
设y=y(x)是由方程xy+e^y=y+1所确定的隐函数,求d^2y/dx^2 x=0

xy+e^y=y+1(1)求d^2y/dx^2在x=0处的值:(1)两边分别对x求导:y+xy'+e^yy'=y'y/y'+x+e^y=1(2)(2)两边对x再求导一次:(y'y'-yy'')/y'^

求由方程cos(xy)=x^2*y^2所确定的函数y的微分

隐函数求导设z=x²y²-cos(xy)dy/dx=-(δz/δx)/(δz/δy)=-(2xy²+ysin(xy))/(2x²y+xsin(xy))=-y/x

求由方程cos(xy)=x^2*y^2 所确定的y的微分

-sin(xy)[ydx+xdy]=2xy^2*dx+x^2*2ydy-sin(xy)ydx-sin(xy)xdy=2xy^2*dx+2x^2*ydy-2x^2*ydy-sin(xy)xdy=2xy^

求由方程y^2/x+y=y^2-x^2所确定的函数在点(0,1)处的导数.

y^2/(x+y)=y^2-x^2y^2=(y^2-x^2)(x+y)两边同时求导得到:2yy’=(2yy’-2x)(x+y)+(y^2-x^2)(1+y’)2yy’=2yy’(x+y)-2x(x+y

求由方程x^4-xy+y^4=xsiny所确定的隐函数的导数d^2y/dx^2在(0,0)处的值

红色圈出再问:那在试卷上怎么答呢再答:如果是大题目,直接写出这两个求导方程,像我这么叙述就行了,个人经验,仅供参考再问:能帮我再解以下另外那几个数学题吗再答:我尽力

求由方程e^2y+3xy-x^2=0所确定的隐函数y的导数dy/dx

两边对x求导,e^(2y)*2y'+3y+3xy'-2x=0,故dy/dx=y'=2x/[2e^(2y)+3x].

2x²y-xy²+y³=0方程所确定的隐函数y的导数dy/dx

∵2x²y-xy²+y³=0==>4xydx+2x²dy-y²dx-2xydy+3y²dy=0==>(4xy-y²)dx=(2xy

求由方程(y^2)-2xy+9=0所确定的隐函数y=y(x)的导数dy/dx.

dy²-2d(xy)+0=02ydy-2(xdy+ydx)=02ydy-2xdy=2ydxdy/dx=y/(y-x)

求由方程y^2-3xy+6=0所确定的隐函数的导数dy/dx

方程两边同时对x求导得2yy'-3(y+xy')=0整理化简得y'=3y/(2y-3x)即dy/dx=3y/(2y-3x)

由方程|x|+|y|=2确定的曲线所围成的图形面积为

图形为正方形,四个顶点为(0,2),(2,0),(0,-2),(-2,0)面积为8

设函数 y=y(x) 由方程y平方-2xy=7所确定 求 dy/dx

对y^2-2xy=7求微分,得2ydy-2(ydx+xdy)=0,∴(y-x)dy=ydx,∴dy/dx=y/(y-x).

求方程xy-cos(πy)=0所确定所的函数y=y(x)的微分

xy'+y+sin(πy)πy'=0y'=-y/[x+πsin(πy)]

求由方程x-y+ 1/2 siny=0所确定的隐函数y的二阶导数d^2y/dx^2

x-y+1/2siny=0F(x,y)=y-x-1/2siny=0F,Fx,Fy在定义域的任意点都是连续的,F(0,0)=0Fy(x,y)>0f'(x)=-Fx(x,y)/Fy(x,y)=1/(1-1

设函数z=f(x,y)由方程y^3z^2-x^2+xyz-5=0所确定,求∂z/∂x和ͦ

y^3z^2-x^2+xyz-5=0等式两边同时对x求导:∂z/∂x=(2x-yz)/(2zy^3+xy)等式两边同时对y求导:∂z/∂y=-(3y&#

求方程y^3-3y+2x=1所确定的隐函数的导数y'

将y看作是x的函数,则对x求导数有:3y^2*y'-3y'+2=0求出y'=2/3(1-y^2)其中y^2,y^3表示幂函数

由方程y的平方-2xy+9=0所确定的隐函数y(x),求dy/dx

设dy/dx=y'.求导,2yy'-2y-2xy'=0dy/dx=y'=y/(y-x)

求方程x^2-xe^y=0所确定的隐函数的导数y'x

两边对x求导,则2x-[e^y+x(e^y)y']=0整理得y'=(2x-e^y)/(xe^y)

已知函数y是方程xy-lny=1+x^2所确定的隐函数,求 y'

第一步方程两边对x求导记y+xy'-y'/y=2x第二步解出y'记y'=(2xy-y^2)/(xy-1)

求由方程e^y*x-10+y^2=0所确定得隐函数的导数.

微分得xe^ydy+e^ydx+2ydy=0,解得dy/dx=-e^y/(xe^y+2y)

由方程xyz+(x^2+y^2+z^2)^1/2 所确定的函数z=z(x,y)在点(1,0,-1

记p=√(x^2+y^2+z^2),则xyz+p=√2,p=√2-xyz两边对x求偏导得:yz+xyz'(x)+[x+zz'(x)]/p=0得:z'(x)=(-yz-x/p)/(xy+z/p)=-(p