y方=4x的准线与x轴相交于P FB=2FA

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:30:35
y方=4x的准线与x轴相交于P FB=2FA
在平面直角坐标系XOY中,已知圆x方+y方-12x+32=0的圆心为Q,过点P(0,2)且歇率为K的直线L与圆Q相交于不

(Ⅰ)圆的方程可写成(x-6)^2+y^2=4,所以圆心为Q(6,0),过P(0,2)且斜率为k的直线方程为y=kx+2.代入圆方程得x^2+(kx+2)^2-12x+32=0,整理得(1+k^2)x

已知抛物线C:y方=2px,点P(-1,0)是其准线与x轴的焦点,过点P的直线l与抛物线C交于A,B亮点.

由题知抛物线方程为y^2=4x(1)由题可设直线方程为y=kx-1又设A(x1,y1)B(x2,y2)则由于这两点都在抛物线上,故其坐标满足抛物线方程,即y1^2=4x1;y2^2=4x2两式相减得:

已知P(x,y)是抛物线y2=-8x的准线与双曲线x

由题意,y2=-8x的准线方程为:x=2双曲线x28−y22=1的两条渐近线方程为:y=±12x由题意,三角形平面区域的边界为x=2,y=±12x z=2x-y即y=2x-z,则z=2x-y

已知直线L过P(1.1)的倾斜角a=6分之派 若L与园X方+Y方=4相交于点A.B 则点P到AB两点的距离之积为___

将直线y-1=tan(π÷6)×(x-1)与圆x²+y²=4联立,最好先把直线化为参数方程:x=1+tcos30º,y=1+sin30º.__________(

1.已知椭圆C中心在坐标原点,与双曲线x方-3y方=1有相同的焦点直线y=x+1与椭圆C相交于P,Q两点,且OP垂直OQ

1.(2004.江苏)若双曲线的一条准线与抛物线的准线重合,则双曲线离心率为(A)(A)(B)(C)4(D)2.(2004.全国理)椭圆的两个焦点为F1、F2,过F1作垂直于x轴的直线与椭圆相交,一个

已知过点M(-3,-3)的直线l与圆x^2+y^2+4y-21=0相交于A,B两点.设弦AB的中点为P,求动点P的轨迹方

轨迹方程其实就是找出该点的1个含XY的等式关系!这里可以这1,当K(斜率)存在时,设P点为(x,y)然后,P点和圆心连线有1个斜率2,P点和M点连线又是1个斜率3,利用2个K的乘积等于-1再化简即可!

已知抛物线C:y^2=4x的准线与x轴交于M点过M点斜率为k的直线l与抛物线C相交于AB两点

(1)作AH垂直x轴三角形AMH中|MH|=A到准线的距离=|AF||MH|/|AM|=4/5得k=tanAMH=3/4(2)记A(x1,y1)B(x2,y2)Q(a²,2a)y=k(x+1

如图,抛物线y=½x²-3x+4的图像与x轴交于A、B两点,与y轴相交于点C,点P在直线BC上运动,

由题意求得A、B、C的坐标分别为A(2,0),B(4,0),C(0,4),直线CB的方程为:y=-x+4,AP的最短距离即点A到直线CB的距离,根据点到直线的距离公式得:d=√2.

已知椭圆C:X²+Y²/4=1过点M(0,1)的直线L于椭圆C相交于A,B两点若L与x轴相交于点p,

答:请参考:(1)x^2+y^2/4=1l:有斜率时y=kx+1l与X轴交点p(-1/k,0),设A(x1,y1)若p为AM中点则:x1=-2/k,y1+1=0,y1=-1将A(-2/k,-1)代入x

已知抛物线y方=4x及其焦点,求圆心在抛物线上,且与x轴及抛物线的准线都相切的圆标准方程

1楼你的抛物线方程看错了.因为与x轴及抛物线的准线都相切,且圆心到准线的距离等于到焦点的距离,所以焦点在圆上,所以焦点就是与x轴的切点.所以圆心为(1,2)或者(1,-2),半径为2.所以方程为(x-

如图,直线y=-√3x+4√3与X轴相交于点A,与直线y=√3x相交于点P(x在根号3外面)

直线y=-√3x+4√3与直线y=√3x相交于点P则有-√3x+4√3=√3x2√3x=4√3x=2代入得y=2√3即P点的坐标为(2,2√3)直线y=-√3x+4√3与X轴相交于点A将y=0代入得x

已知如图直线y=-根号3x+4与x轴交于点A,与直线y=-根号3x相交于点P

直线y=-根号3x+4与直线y=-根号3x是平行线,不可能相交,请改正!

直线l过抛物线y^2=29x(p>0)的焦点,且与抛物线相交于A(x1,y2),B(x2,y2)两点,点C在抛物线的准线

证明,由题意可知抛物线的焦点为(29/4,0)直线AB方程为y=k(x-29/4)代入曲线方程的y^2-29/k*y-29^2/4=0有根公式可得y1+y2=29/ky1*y2=-29^2/4有由题可

设抛物线C:y^2=8x的焦点为F,准线与x轴相交于点K,点A在抛物线C上且|AK|=√2|AF|,则三角形AFK的周长

设点A的坐标为(x,y)满方程:y^2=8x.(1)由|AK|=√2|AF|,则,|AK|^2=2|AF|^2,即:(x+2)^2+y^2=2(x+2)^2.(2)由(1)(2)联合解得:x=2,y=

设抛物线y²=4x的焦点为F,准线为l,经过F且斜率为√3的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,

F(1,0),准线为x=-1经过F且斜率为√3的直线为:y=√3x-√3代入得A(3,2√3)(点A在第一象限,y为正)AK=1+3=4高h就为点A的纵坐标,即2√3所以S△AKF=1/2*2√3*4

已知抛物线C的准线为X=-P/4(P>0) 顶点为原点 抛物线与直线L:Y=X-1 相交所得弦长为3倍根号2 求P的值和

设弦长AB中A(X1,Y1),B(X2,Y2),依题意得:联立Y=X-1Y^2=2PX二式可得:X^2-2(P+1)X+1=0X1+X2=2P+2,X1*X2=1(X1-X2)^2=4(P^2+2P)

过点P(0,2)作直线L与椭圆(x+1)方/4+y方=1相交.则L的斜率k的取值范围

设直线L:y-2=k(x-0),y=kx+2代入方程并化简(x+1)²+4(kx+2)²=4,(1+4k²)x²+(x+16k)x+13=0令△=0得,3k&s

如图,已知函数y=-3/x与y=ax²+bx(a>0,b>0)的图像相交于点p,点P的纵坐标为1,则关于x的方

将y=1带入y=-3/x得:x=-3所以P(1,-3)而x的方程ax²+bx+3/x=0即x的方程ax²+bx=-3/x的解是指函数y=-3/x与y=ax²+bx(a>0

已知抛物线y2=2px(p>0)的准线方程是x=−12,直线x-y-2=0与抛物线相交于M,N两点.

(1)∵y2=2px(p>0)的准线方程为x=−p2,∴p=1.∴抛物线方程为y2=2x.(2)证明:将x=y+2代入y2=2x,消去x,整理,得y2-2y-4=0,设M(x1,y1),N(x2,y2