z=(1 i)3x(a-i)2 z=2 3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:12:58
z=(1 i)3x(a-i)2 z=2 3
已知复数z满足3z+(z-2)i=2z-(1+z)i,求z

设z=a+bi因为3z+(z-2)i=2z-(1+z)i所以3(a+bi)+(a+bi-2)i=2(a+bi)-(1+a+bi)i3a+3bi+ai-b-2i=2a+2bi-i-ai+b(3a-b)+

已知复数Z满足:|Z|=1+3i-Z,求[(1+i)^2(3+4i)^2]/2Z

|Z|=1+3i-Z设z=x+yi|z|=√(x^2+y^2)|Z|=1+3i-Z,√(x^2+y^2)=(1-x)+(3-y)i∴√(x^2+y^2)=1-x,且3-y=0∴y=3√(x^2+9)=

复数z满足 z+3i绝对值=1 z绝对值=2 求z

设z=a+bi,z绝对值=2|z|=√(a^2+b^2)=2,a^2+b^2=4.(1)z+3i=a+bi+3i=a+(b+3)iz+3i绝对值=1√a^2+(b+3)^2=1a^2+(b+3)^2=

已知复数z满足z(1-i)+Z/2i=3/2+i/2,求z的值

设z=a+bi.则(a+bi)(1-i)+(a+bi)/2i=3/2+i/2a+b+(b-a)i-ai/2+b/2=3/2+i/2(a+3b/2)+(b-3a/2)i=3/2+i/2∴a+3b/2=3

已知复数z满足z(1-i)+(z-/2i)=3/2+i/2 求z的值

z=a+biz-=a-bi所以(a+bi)(1-i)+(a-bi)/2i=3/2+i/2乘22a-2ai+2bi+2b-ai-b=3+i2a+b-3+(2b-3a-1)i=0所以2a+b-3=03a-

已知z=x+yi(x,y∈R),且z*Z+(1-2i)*z+(1+2i)Z=3 求复数z的实部与虚部的和的最大值

z*Z=x²+y²∴z*Z+(1-2i)*z+(1+2i)Z=x²+y²+2x-4y∴x²+y²+2x-4y=3∴(x+1)²+(

已知复数z满足z*z-3i*z=1+3i,求z

z*z-3i*z=1+3i化简(z+1)(z-1-3i)=0所以z=-1或z=1+3i

已知复数Z.=3+2i 复数z满足Z.*z=3z+Z.则复数z等于?

设z=a+bi则(3+2i)(a+bi)=3(a+bi)+3+2i即(3a-2b)+(2a+3b)i=(3a+3)+(3b+2)i所以3a-2b=3a+3,2a+3b=3b+2故a=1,b=-3/2所

Z=(a+2i/1+i)+(3-i) 复数Z为纯虚数,求a=?

 再问:为什么就等于0了

已知复数z满足|z+2i|+|z-i|=3,求|z+1+3i|的最值.

|z+2i|+|z-i|=3,z的几何意义就表示z到点A(0,-2)、B(0,1)的距离之和等于3,由于|AB|=3,故z就在线段AB上,考虑|z+1+3i|=|z-(-1-3i)|,其几何意义就表示

解复数方程 |z-2|-z=1+3i

|z-2|=z+1+3i因为左边为实数,所以右边也为实数,故z=a-3i|z-2|=a+1|a-2-3i|=a+1平方:(a-2)^2+9=(a+1)^2展开:-4a+4+9=2a+16a=12a=2

已知复数z满足:/z/=1+3i-z 求z 设z=a+bi /z/=1+3i-z=根号<a^2+b^2>=1-a+<3-

/z/=根号<a^2+b^2>,同时/z/=1+3i-z=1+3i-(a+bi)=(1-a)+(3-b)i那么就有,/z/=根号<a^2+b^2>=(1-a)+(3-b)i,因为/z/只能是实数,那么

复数z满足z x (1 - i)=2,i为虚数单位,则z=?

设z=a+bi,(a+bi)(1-i)=2,a+bi=2/(1-i)=2(1+i)/(1+1)=1+i,∴a=1,b=1,∴z=1+i.或者:z=2/(1-i)=2(1+i)/2=1+i.

1.已知z=x+yi,且z乘以共轭复数z+(1-2i)z+(1+2i)共轭复数z=3,求|z|的最大值,和复数z的实部与

z乘以共轭复数z+(1-2i)z+(1+2i)共轭复数z=x²+y²+(1-2i)(x+yi)+(1+2i)(x-yi)=x²+y²+x+2y-(2x-y)i+

已知复数Z=(1+i)^2+3(1-i)/2+i 求复数Z的模|Z|的大小,若存在实数a、b使Z^2+az+b=-z(z

第一个问题:∵z=(1+i)^2+3(1-i)/2+i=1+2i-1+3/2-i/2+i=3/2-(5/2)i.∴|z|=√[(3/2)^2+(-5/2)^2]=√(9/4+25/4)=6/2=3.第

设复数z=a+i,绝对值z等于根号2,求复数z,和z+1分之z格玛

a=1;z=1+iz+1/z=1+1/z=1+1/1-z=1+z/2+1=3/2+1/2z再问:可以明白一点不〜谢了!

已知复数z瞒足z+1-3i=5-2i,求z?

4+i再问:解答过程啊再答:(5-1)+(-2i-(-3i))=4+i

复数z=[(1+i)^2+3(1-i)]/(2+i),若z^2+a/z

z=(1+2i-1+3-3i)/(2+i)=(3-i)(2-i)/(2^2+1)=(6-5i-1)/5=1-iz^2+a/z=1-2i-1+a/(1-i)=-2i+a(1+i)/(1+1)=-2i+a