z=6-x2-y2是什么曲面
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:41:06
设切点为P(x0,y0,z0),故曲面在切点处的切平面的法向量为n={2x0,2y0,−1}又由于n∥(2,2,1),且切点P在曲面上∴2x02=2y02=−11x02+y02+z0=1解得:x0=y
∵x2-4x+y2+6y+z−3+13=0,∴(x-2)2+(y+3)2+z−3=0,∴x-2=0,y+3=0,z-3=0,解得x=2,y=-3,z=3,∴(xy)z=[2×(-3)]3=-216.
可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就
x^2+y^2≥2xyxy≤(x^2+y^2)/2x^2+xy+y^2≤(x^2+y^2)*3/2≤2*3/2=3x^2+y^2+2xy≥0xy≥-(x^2+y^2)/2x^2+xy+y^2≥(x^2
∵x2+y2+z2-2x+4y-6z+14=0,∴x2-2x+1+y2+4y+4+z2-6z+9=0,∴(x-1)2+(y+2)2+(z-3)2=0,∴x-1=0,y+2=0,z-3=0,∴x=1,y
设所围成的立体为Ω,则Ω的上半曲面是抛物面,下半曲面是开口向上的锥面,因此,宜用柱面坐标计算,又由z=6−x2−y2z=x2+y2⇒交线x2+y2=4z=2,Dxy:x2+y2≤4,而r≤z≤6-r2
是双曲抛物面,或叫马鞍面,像马背上做人的马鞍.图形在百度上我的空间上也有.请观赏http://hi.baidu.com/三峡电力职业学院教授/blog/item/de80163f0e1023d47d1
Ω由z=x²+2y²及2x²+y²=6-z围成.消掉z得投影域D:x²+2y²=6-2x²-y²==>x²+y
由于曲面z=2-x2-y2及z=x2+y2所的交线是x2+y2=1,因此Ω在xOy面上的投影区域为D:x2+y2≤1∴Ω的体积为 V=∭Ωdv=∫2π0dθ∫10ρdρ∫2−ρ2ρ2dz=∫
设切点为M(a,b,c),则c=a^2+2b^2,----------(1)令f(x,y,z)=z-x^2-2y^2,则f对x、y、z的偏导数分别为-2x、-4y、1,因此曲面在M点处的切平面的法向量
证明:由高斯公式,有左边积分=∭Ω(2xyz2−2xyz2+1+2xyz)dxdydz=V+2∭Ωxyzdxdydz ∵∭Ωxyzdxdydz=∫2π0sinθcos
极坐标求解围成区域z1在上z2在下z1=√(x²+y²),z2=x²+y²令z1=z2√(x²+y²)=x²+y²即r=
再问:额。。这只是单叶抛物面的体积吧。。不应该是围成的立体的体积么再答:我只是说最前面的那个曲面,后面的是抛物柱面这个不用画图,积分限很清楚的,就直接写了
图形是一个开口向上的抛物面和一个开口向下的抛物面围成的立体,不用考虑图形具体的样子首先求立体在xy坐标面上的投影区域,把两个曲面的交线投影到xy面上去,就是两个方程联立,消去z,得x^2+y^2=2,
依据物质全部转化的极限计算,若建立平衡时反应正向进行,则X2浓度为零Y2浓度为0.2mol/L,Z为0.3mol/L;若建立平衡反应逆向进行,Z为0,X2浓度为0.3mol/LY2浓度为0.5mol/
∵(x-2)2+(y+3)2+z+2=0,∴x-2=0,y+3=0,z+2=0,解得x=2,y=-3,z=-2,∴(xy)z=(-6)-2=136.
3x2+2y2-6x=0x2+y2=1/2(6x-x2)=9/2-1/2(x2-6x+9)=9/2-2-1/2(x-3)2当x=3时,Z最大=4.5
两个曲面的交线可由以下方程组给定z=6-2x²-y²z=x²+2y²或x²+y²=2z=x²+2y²在 xy&