z=ue的v分之u,u=x的平方 y的平方,v=xy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:09:17
这道题运用链式法则,先求出对y偏导,然后求对x偏导,因为中间变量u,v都含有x,那么他们的二元函数f(u,v)的偏导f1,f2也是含有x的,所以对(f1+xf2)对x求偏导就是最后的结果,这里注意f1
用z'表示z的共轭复数.|(z-u)/(1-z'u)|(分子分母同时乘以z)=|(z-u)z/[z(1-z'u)]|=|(z-u)z/(z-zz'u)|(注意到|z|=1,zz'=|z|^2=1)=|
氽V=P嚱#gOd.WjU膟婍:(扜吕db弁2噜骷醎楾abY鰀獗嫒棨J哗+S腪>I嘲鎉亳笳_E皹U岈X鉪b瀂
z(x)+z(y)=-(f(x)+f(y))/f(z)f(x)=f1(1-z(x)-f2z(x))f(y)=-f1z(y)+f2(1-z(y))f(z)=-f1-f2所以z(x)+z(y)=1+z(x
偏z/偏x=(偏z/偏f)*f'x=偏z/偏f*1=偏z/偏f;偏z/偏u=(偏z/偏f)*(偏f/偏u)+偏g/偏u+偏h/偏u.
令v(x,y)=0不就行了么、、、或者u(x,y)在每处的偏导数都存在
z=f(x,u),u=xy,求z对x的二阶偏导数∂z/∂x=∂f/∂x+(∂f/∂u)(∂u/∂x)=&
最容易理解的办法,代进去有z=x+y+xy那么对x偏导数有那个偏导数=1+y
az/ax=az/au+au/ax=2ulnv-y/x^2az/ay=az/av+av/ay=u^2/v+2y然后再稍微化简一下就行啦!再问:怎么简化啊。。。。我完全不会啊。。。再答:这里的u跟v应该
symsuv;d=[-5:0.5:5];[uv]=meshgrid(d);x=u.*sin(v),y=u.*cos(v),z=u;surf(x,y,z)
(f/u)+(f/v)=1(fv/uv)+(fu/uv)=1f=uv/(u+v)
用微分.再问:能不能用复合函数求导解下再答:用的就是复合函数求导方法。函数t=f(y/z,z/x)是由t=f(v,u)和v=y/z、u=z/x三个函数复合而成的。解答过程省略了:df(v,u)=0;f
z=f(u,v),u=xy,v=x^2-y^2du/dx=y,du/dy=xdv/dx=2x,dv/dy=-2ydz/dx=dz/du*du/dx+dz/dv*dv/dx=df/du*y+df/dv*
设f(z)=u+iv为解析函数,则由∂v/∂x=-∂u/∂y=-x+2y;∂v/∂y=∂u/∂x=2x+
y=u^v,则lny=lnu^v,lny=vlnu,求导有:y'/y=v'lnu+vu'/u,y'=y(v'lnu+vu'/u),其中,y=u^v,y'=dy/dx,v'=dv/dx,u'=du/dx
∂z/∂x=∂z/∂u*du/dx+∂z/∂v*dv/dx=1/(u^2+v)*2u+1/(u^2+v)*2xy∂z
由柯西-黎曼条件v'(x)=-u'(y),v'(y)=u'(x)得u'(y)=-6xy,u'(x)=3y²-3x²因而选择B