z=x y的概率分布 x,y在三角形区域内均匀分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:52:22
完整回答:显然,X、Y的联合概率密度f(x,y)在区域(0
是的.卷积公式其实就是将F(X,Y)拆成了F(X)乘以F(Y)然后利用积分公式,我把具体的写给你:一般的公式是:F(Z)等于F(X,Z-X)dZ{或F(Z-Y,Y)dY}在合适区域内积分.特别地,如果
由于不独立,所以必须知道联合密度才能求.
Z=XY,f(z)=∫f(x,y)dx=∫f(x)f(y)dx=∫(1/x)f(x)f(z/x)dx=∫(1/x)f(z/x)dx---z/x=t---->=∫(z-->1)(1/t)dt=Ln(1/
设x服从[a,b]的均匀分布f(x)=1/(b-a),x∈[a,b]0,其他设y服从[c,d]的均匀分布f(y)=1/(d-c),y∈[c,d]0,其他所以f(xy)=f(x)f(y)=1/[(b-a
N(1,3)P(X>Y)=P(X-Y>0)=P(Z>0)又T=Z-1/根号3~N(0,1)则原式=P(T>-1/根号3)查标准正太分布表可得到概率再问:Z~N(1,1)不是这样?
设(y+z)/x=(z+x)/y=(y+x)/z=k则y+z=kx,z+x=ky,y+x=kz三式相加2(x+y+z)=k(x+y+z)故当x+y+z=0时,k=-1,但xy-z不等于0,可知x+y+
应该要求X_n独立同分布.X服从指数分布,从而由定义知,F(x)=积分从0到x{yexp(-ys)ds}=1-exp(-yx)Z=min{x_i},从而P(Z=z,x2>=z,...xn>=z)=1-
是标准正态分布.经济数学团队帮你解答.请及时评价.
P{X=-1,Y=1}=P﹙X=-1﹚×P﹙Y=1/X=-1﹚=1/3×1=1/3[这里假定X是等可能取值,∴P﹙X=-1﹚=1/3又已知P{X^2=Y^2}=1.∴X=-1时Y=1的概率=1即P﹙Y
直接看图.再答:再答:
再问:怎样得出结果的呢?中间的计算步骤是什么?因为我学的书上面对于这个问题没有讲解教授也只是一带而过所以具体过程不清楚再答:积分是最基本的应该会求吧要先求出被积函数的原函数,例如x的原函数是(1/2)
可以用概率和为1的性质及期望值来求出x与y.经济数学团队帮你解答,请及时评价.谢谢!
(1)X的边缘分布律X-101P0.20.50.3(2)Z=X+Y的分布律Z-1012P00.40.50.1----------------------------------------------
两个正态分布的和分布(不依概率1等于常数的话)一定是正态分布.EZ=E(X+Y)=EX+EY=0DZ=D(X+Y)=DX+DY=2故Z~N(0,2)f(z)=1/(2√π)e^(-z^2/4)
首先f(x,y)=1/(b-a)(d-c)(a<=x<=b;c<=y<=d) =0elseFz(z)=P(XY<=z)(情况
定义域面积为2x1的矩形,密度总和为1,且均匀分布,则密度函数恒为1/2Fz(z)=P(Z=z)=1-∫(1/2~1)(1/y~2)f(x,y)dxdyf=F'P(A|B)=P(A|B非)所以A的发生