z=x^2 y^2与z=1所围成三重积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 16:26:08
1/x=p1/y=q1/z=rpq+qr+pr=1(y+x)/z+(y+z)/x+(z+x)/y≥2(1/x+1/y+1/z)^2为(pq+qr+pr)[r/p+r/q+q/r+q/p+p/r+p/q
两个办法:一个是用积分,一个是用立体角①用积分用球面坐标,设半径r与z轴夹角为φ,r在XOY平面上投影与x轴夹角为θ则积分区域为:0≤r≤1,0≤φ≤π/4,0≤θ≤2π两曲面所围成立体体积为V=∫d
-(pi*(5*5^(1/2)-27))/6另附Matlab程序段:%此程序为计算空间中给定的曲面r(u,v)的面积clearall;clc;symsuv;%{设置曲面的向量形式r(u,v)=分量函数
曲面z=x^2+y^2+3在点M处的法向量n=(2x,2y,-1)|M=(2,-2,-1)写出切平面的方程2(x-1)-2(y+1)-(z-5)=0整理为2x-2y-z+1=0可以写成z=2x-2y+
由旋转抛物面的性质,所围体积等于y=x²围绕y轴旋转所得体积,积分区域x(0,1)V=∫πx²dy=2∫πx³dx=π/2
再答:那个图画得可能有点纠结,但就是那样的,开口向上的是z=x^+2y^2,开口向下的是z=6-2x^2-y^2再答:这个是二重积分后面的练习题,也可以用三重积分来做再答:再答:被积函数为1的三重积分
这种题目的基本思路是运用Fubini定理,必要时用极坐标换元.再问:Fubini定理是什么再答:fubini定理即富比尼定理,参考资料是百度百科。这个定理在微积分的书里一般都有,百科中的“σ-有限测度
z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)
∫∫D(x^2+y^2)dxdy其中D为:x^2+y^2
=∫∫zdxdy=∫∫(x-y)dxdy而积分区域底面是一个圆弧.由圆x^2+y^2=2x与y=x相交围成利用极坐标=∫∫r(cosθ-sinθ)rdrdθ而积分区域变为r^2=2rcosθ,所以为r
这题用二重积分,三重积分都可求得.
第一个是对的!其余两个都不对!错在:将x^2+y^2=z代入积分式.因为在立体内部x^2+y^2
哦,转换一下用柱面坐标即可:(x^2+y^2)^1/2
如果我没算错的话,应该是PI/4,PI就是圆周率∫∫(1-4x^2-y^2)dS,S为区域4x^2+y^2
根号x-3+|y-2|+z^2=2z-1根号x-3+|y-2|+(z^2-2z+1)=0根号x-3+|y-2|+(z-1)^2=0由于数值开根号,绝对值和平方数均为大于等于0的数则上式要成立只有X-3
公式输入了好半天,希望可以看懂哈!另外,可以不用辅助函数,直接利用已知等式计算求导.
这个题目没有问题么,我是说最后一个式子确定是z+5y+8z=-2?如果没有问题的话:x+y+z=1;①x+3y+7z=-1;②z+5y+8z=-2③①-②2Y+6Z=-2Y=(-2-6Z)/2=-1-
∵所围成图形是关于xz平面和yz平面对称的∴所求体积=4×第一卦限体积∵由x²+y²+z²=R²==>z=√(R²-x²-y²)由