Z服从标准正态分布,Z0=-0.26, Z1=1.85,求P(Z0≤X≤Z1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:22:44
用卷积公式求得Z的概率密度函数,配方太麻烦所以提到最前面写.与x无关的项作为“系数”提到关于X的积分外面,然后构造关于x的正太分布密度函数积分,积分结果=1,积分号以外的“系数”就是要求的结果,为目标
可以用查表法计算,P(0<=Z=<1.2)=ψ(1.2)-ψ(0)=0.8849-0.5=0.3849
随机变量X的概率密度函数为:{[1/sqrt(2pi)δ]}*exp[-(x-u)^2/(2*δ^2)]被称之为标准正态分布.
只需考察事件(X/Y0,X0,x=0,arctan(1/a)
Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2
联合密度函数f(x,y)=f(x)*f(y)=(1/2π)e^[-(x^2+y^2)/2]画图可知(X为纵坐标,Y为横坐标)是的Z
1.XY相互独立,相关系数r=02.E(Z)=E(2X+Y)=2E(X)+E(Y)=03.D(Z)=[(2X+Y)^2]=4D(X)+D(Y)+4E(X)E(Y)=4+1+0=54.N(0,5)5.f
/>FZ(z)=P(XY≤z)=P(XY≤z|Y=0)P(Y=0)+P(XY≤z|Y=1)P(Y=1)=12[P(XY≤z|Y=0)+P(XY≤z|Y=1)]=12[P(X*0≤z|Y=0)+P(X≤
有没有学过特征函数?没有的话很难解释...第一问服从自由度为2的卡方分布,也就是Gamma(1,1/2)分布,写出密度函数就是指数分布第二问用正态分布线性组合性质直接就有了,用特征函数很好解释
如果X服从N(m,s*s),则z=(X-m)/s服从N(0,1).证明如下:设X服从N(m,s),其分布函数为F(y)=p(X
Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)
令Z=x+yi由题意知z+z0=(3+x)+(2+y)i3z+z0=(3x+3)+(3y+2)i实部虚部分别相等3+x=3x+3x=3xx=02+y=3y+2y=3yy=0这个复数就是0
=NORMSDIST(1.85)=NORMSINV(0.49)=NORMDIST(9,5,62,TRUE)=NORMINV(0.83,5,42)=2*TDIST(9,14,1)=TINV(0.35,1
因为E(X-Y)=E(X)-E(Y)=0,var(X-Y)=var(X)+var(Y)=1.
正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)
打开数据序列,在series窗口中依次点击view-descriptivestatistics&tests-histogramandstats出现的窗口右侧最下面有Jarque-Bera统计量和其对应
1,P(0.02