|xyz|ds z=x² y²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:21:54
原式=x(x²+xy+xz+yz)=x[x(x+y)+z(x+y)]=x(x+y)(x+z(
∵x^2=yz∴x+y+z=xyz=x^3x^3-x=y+z≥2根号(yz)=2|x|x(x^2-1)≥2|x|当x<0时,x(x^2-1)≥-2xx^2
(x+y-z)/z=(y+z-x)/x=(z+x-y)/y[x+y]/z-1=[y+z]/x-1=[z+x]/y-1[x+y]/z=[y+z]/x=[z+x]/y设[x+y]/z=[y+z]/x=[z
配凑柯西不等式1/(x+y)+1/(y+z)+1/(z+x)≤[1/2(xy)^0.5]+[1/2(yz)^0.5]+[1/2(zx)^0.5]=(1/2){1*[z/(x+y+z)]^0.5+1*[
设(y+z)/x=(x+z)/y=(x+y)/z=k;y+z=kx;x+z=ky;y+z=kx;2(x+y+z)=k(x+y+z);k=2或x+y+z=0;所以,(y+z)(x+z)(x+y)/xyz
3xyz+2(x^2y+y^2z-xyz)-xyz+2z^2x原式=3xyz+2(x²y+y²z+z²x)-3xyz=2(x²y+y²z+z²
令(y+z)/x=(z+x)/y=(x+y)/z=t∴y+z=xt,z+x=yt,x+y=zt三式相加得:2(x+y+z)=(x+y+z)t∴(2-t)(x+y+z)=0∴2-t=0或x+y+z=0若
由基本不等式:3√(xyz)≤(x+y+z)/3(当且仅当x=y=z时,取等号)所以:(xyz)≤[(x+y+z)/3]^3(xyz)≤[a/3]^3=a^3/27所以,当x=y=z时,xyz有最大值
这题要数形结合,3维立体空间,x+y+z=6是一个平面,xyz=20也是一个个曲面.它们相交得到两条曲线.即这题无穷多的解.可以说这题没有你要的答案,因为答案就是这两条曲线上所有的点,而这些点就是用(
原式=2x^3-xyz-2x^3+2y^3-2xyz+xyz-2y^3=-2xyz=-2×(-1)×(-2)×(-3)=12
xyz=x+y+z<3z∴xy<3由于x<y,故xy=2,x=1,y=2∴z=3
(x+y)/z=(x+z)/y=(z+y)/xx,y,z等价x=y=z(x+y)(x+z)(z+x)/xyz=8
这题目xyz难道没有约束条件?如果x,y,z都是正整数的话,由于231正约数为3,7,11所以x+y+z=3+7+11=21如果x,y,y只是整数,就需要考虑正负问题.可以为-3+7-11=-7,-3
x+y大于等于2倍根号下xy同理x+z大于等于2倍根号下xzz+y大于等于2倍根号下zy所以(x+y)(y+z)(z+x)大于等于8xyz当取到8xyz时分数值最大为1/8此时x=1/3y=1/3z=
(2x³-xyz)-2(x³-y³+xyz)+(xyz-2y³)=2x³-xyz-2x³+2y³-2xyz+xyz-2y³
是指所构造的方程存在实数解时,其判别式△不小于0.再问::t^2-(y+z)t+yz=0这个是什么意思再答:题目抄错了,应当是证明x²≥3.利用韦达定理啊!依条件式知:yz=x²,
原式=-2xyz=-2*-1*-2*-3=12
(x+1)^2+|y-1|+|z|=0(x+1)^2=0x+1=0x=-1y-1=0y=1z=0A=2x^3-xyz=2*(-1)^3-0=-2B=y^3-z^3+xyz=1^3-0+0=1C=-x^
(2x^3-xyz)-2(x^3-y^3+xyz)+(xyz-2y^3)=2x^3-xyz-2x^3+2y^3-2xyz+xyz-2y^3=-2xyz
√x+y-2011+√2011-x-y要成立则x+y≥2011x+y≤2011最终:x+y=2011所以等号右边为0,则左边也为03x+y-z-2=02x+y-z=0则x=2,y=2011,z=201