ρ=a(1 cos θ)长度积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:15:27
解答如下: 再问:你这是用二重积分的方法做的,我是问像我问题里的那种方法那个式子是怎么回事再答:补充如下:
你求的是垂直于ρ方向的直角边,应该求的是斜边,还要乘一个√(1+a^2)
pcos2a=p-8cosap^2(cos^2a-sin^2a)=p^2-8pcosax^2-y^2=x^2+y^2-8xy^2=4x直线x=4+2t,y=2-t,即有2y+x=8.代入到y^2=4x
心形曲线r=a(1+cosb)形状是绕了一圈他的定义域是[0,2π]但是他关于x轴对称我们求面积的话,只要求上半部分就好了因为下面的面积和上面一样所以我们只做[0,π]上的面积,再前面乘以那个2就行了
微积分dl=sqrt((dx)^2+(dy)^2)=(sqrt(1+(y')^2)dx对dl积分即(积分符)(sqrt(1+(y')^2)dx)
周长?用一型曲线积分∫||dl其中为曲线方向向量L=∫√(r^2+r'^2)dθ其中r就是ρ,表达方式不一样罢了,积分限[0,2π]结果得8a再问:能否直接用定积分来求曲线积分什么的还没学~
将x换为tanθ,y=(cosθ)^2dx=dtanθ=d(sinθ/cosθ)=1/(cosθ)^2dθ应该得∫0~1(cosθ)^2dtanθ=∫(0~π/4)(cosθ)^2*1/(cosθ)^
实际上这个题目不难,因为积分等于零,容易想到采用奇函数的积分性质来进行求证.∫(0,2π)cos(2cosθ)sin(nθ)dθ=∫(-π,π)cos(2cos(θ-π))sin(n(θ-π))d(θ
嗯再答:加上绝对值号可以视为长度再答:可以给好评么?再问:向量加上绝对值就可以看成向量的长度吗再答:嗯,不理解么?再问:嗯
这应该用定积分来求.根据公式,心型线的长度设为L,那么L=∫(r^2+r'^2)^(1/2)dθ其中,r'表示r的导数,积分上限2π,下限为0L=∫{[a(1+cosθ)]^2+(asinθ)^2}^
算了一下才发现,你给的式子应该过程吧由第一行令√3cosθ=t,上下限变为√3~-√3,θ=arccost/√3dθ=-1/√(3-t^2)dt,就成了第二排后面你有答案吧,后面一步可耻的无力了==!
等等,一会给你,我也算出和答案不一样,不知怎么回事,照片是过程,再问:我也是这个答案哎!再答:可能是答案有问题吧,做法又没有错,采纳吧啊啊
用牛顿-莱布尼兹定理、原式=a²(sin2θ/8+θ/2)|上限π/2下限-π/2=πa²/2答案错了吧.再问:你也是这答案吗?那估计是答案错了谢谢
=[1-(sin²a+cos²)(sin^4a-sin²acos²a+cos^4a)]/cos²a(1-cos²a)=[1-(sin^4a+
=sin4Asin2A+cos4Acos2A-cos2A(cos4Acos2A-sin4Asin2A)=cos2A+cos2Acos6A=cos2A(1+cos6A)
x用θ代替啦!由曲线积分公式,心型线的长度设为L,那么L=∫(r^2+r'^2)^(1/2)dθ其中,r'表示r的导数,积分上限2π,下限为0L=∫{[a(1+cosθ)]^2+(asinθ)^2}^
再问:r=a(1-cosθ)或r=a(1+cosθ)(a>0)//含义是什么意思呀大哥能心细否?再答:极坐标方程水平方向:r=a(1-cosθ)或r=a(1+cosθ)(a>0)垂直方向:r=a(1-