ρ=根号下cos2t化为直角坐标

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:01:21
ρ=根号下cos2t化为直角坐标
已知直线Y=-根号3x+根号3与x轴,Y轴分别交于点AB,以线段AB为直角边在第一象限内坐等腰RT三角形ABC

1、OB=√3OA=1AB=AC=2∴S△ABC=1/2×2×2=2∠OBA=30°∴∠CAx轴=30°∴Cy=1/2AC=1Cx=√3+1C坐标(√3+1,1)2、S△BOP=1/2OB×|Px|=

化为最简二次根式:根号下20分之7

根号下20分之7=√35/10;根号下-8x五次方y三次方(x0)=2x²y√-2xy根号下-3x分之2=√(-6x)/(-3x)如果本题有什么不明白可以追问,

把圆:ρ=2cosa(a为参数) 化为直角坐标系方程,怎么化?

x=ρcosa,y=ρsinaρ^2=2ρcosa=>x^2+y^2=2x(x-1)^2+y^2=1再问:圆:ρ=2cosa(a为参数)中的“ρ”是变量吧?再答:极坐标里,极径ρ,是点(x,y)到原点

根号下125+根号下20=?

原式等于5倍根号下5加2倍根号下5=7倍根号下5=根号下245

请问根号下1.5如何化为最简二次根式啊?请写出详细过程.

根号1.5=根号3/2=根号3除以根号2然后上下同时乘以根号2然后就等于根号6除以2因为这上面打不出根号,所以假设@是根号的话那么应该表示成@1.5=@下3/2=@3/@2然后上下同时乘以@2,@3*

把极坐标方程ρcos2θ=2cos(2π/3-θ)化为直角方程

两边同乘以ρ得ρ²cos2θ=2ρcos(2π/3-θ)用三角公式展开ρ²(cos²θ-sin²θ)=2ρ(-1/2cosθ+√3/2sinθ)即ρ²

根号下205怎么化简,不要小数!化为最简二次根式!

√205=√41×5由于5和41都是质数所以√205已经是最简根式,没法继续化简了

在平面直角坐标系中Rt三角形ABC的直角顶点C在x轴的上方,且A(0,0),B(5,0),BC=2倍根号5,求顶点C的坐

C(1,2)再问:请能讲一讲,是怎么得来的吗?再答:由BC=2倍根5,AB=5,由勾股定理可得,AC=根5,角B的余弦为2/5倍根5,可算得C点到AB(x轴)的距离=AC乘以角B的余弦=2,即为其Y轴

t属于(0,π),sint+cost=1/3,求cos2t

∵(sint+cost)^2=1+2sintcost=1/9∴sintcost=-4/9∵t∈(0,π)∴sint>0∵sintcost

将三次根号下-2√2化为分数指数幂的形式是

因为,√X=X^1/2,三次根号下Y即=Y^1/3所以,有以上结果:三次根号下-2√2=(-2x2^1/2)^1/3

已知函数F(X)=根号下,若a属于(π/2,π),则F(COSa)+F(-COSa)可化为?

cosa=2cos^2(a/2)-1=1-2sin^2(a/2)(1-cosa)/(1+cosa)=sin^2(a/2)/cos^2(a/2)a/2∈(π/4,π/2)sin(a/2)>0cos(a/

将直角坐标系下的二重积分化为极坐标下的二重积分:∫dx∫f(x,y)dy=

积分区域:y=0和y=√(2x-x²)围成的区域化为极坐标:∫dθ∫f(rcosθ,rsinθ)*rdr再问:图不是个半圆吗为什么不是∫再答:画图看看就知道了是第一象限的半圆

把直角坐标系方程x+y=0化为极坐标方程

ρcosθ+ρsinθ=0ρsinθ=-ρcosθsinθ/cosθ=-1tanθ=-1θ=3π/4

极坐标方程ρ=cosθ化为直角坐标系方程为

ρ=cosθρ^2=ρcosθ则x^2+y^2=x所以(x-1/2)^2+y^2=1/4是一个圆的方程再问:能再写详细点么再答:已经够详细了对于直角坐标与极坐标之间的关系你要知道下面三个公式:x=ρc

等腰直角三角形ABC的直角顶点C在y轴上,斜边AB在x轴上,点A在点B左侧,直角边AC=根号2,试写出顶点A、B、C的坐

原点为O,有直角三角形得AC=BC.AO=CO=BO在直角三角形AOC中AO*AO+CO*CO=AC*AC(勾股定理)AC=根号2,则AO=1,CO=1,BO=1所以A(-1,0),B(1,0),C(