∑n=0到无穷,2^n n 1×x^n的幂级数呢收敛域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:43:47
从第二项开始,n/(n²-2)>1/n,从1/n发散可以知道该数列发散
(1)令S(x)=∑(n=0→无穷)n*x^n/(n+1)则S(x)=x/2+2/3*x^2+3/4*x^3+···+n/(n+1)*x^n+···(1)两边同乘x:xS(x)=1/2*x^2+2/3
∑(n从1到正无穷)n(n+2)x^n=x∑(n从1到正无穷)n(n+2)x^(n-1)=x∑(n从1到正无穷)[(n+2)x^n]′=x[∑(n从1到正无穷)(n+2)x^n]′∑(n从1到正无穷)
原式等于lim(n->oo)c^n/[1+c^(2n)]=0c属于(0,1)再问:你这回答和没说一个样……不要逗比再答:根据积分中值定理积分部分等于(1-0)*【c^n/[1+c^(2n)]】c属于(
这个题有点技术含量印象中先要分部积分化简.楼下的接着做.
这个恰好是sinx的级数展开式,所以∑((-1)^n)*(x^(2n+1))/(2n+1)!=sinxx∈(-∞,+∞)再问:sinx的幂级数展开式能用来算圆周率吗?再答:能算任何的sinx的函数值,
1/n发散,e^-n^2收敛,所以整个级数发散e^-n的收敛性是很强的,强于所有的p级数
令s(x)=Σ1/(2n!)x^2n=1/2!x²+1/4!x^4+1/6!x^6+.s'(x)=1/1!x+1/3!x³+1/5!x^5+.s''(x)=
111111111111144444444444444444444444444444444444444444444444444444444
因此对每一项[(-1)^n]/(n+1)x^n积分得:(-1)^nx^(n+1)这样得到的数列即是等比数列,公比为-X,首项为X,可以立即求和,得x/(1+x)因此再对x/(1+x)求导即得原级数和为
首先确定收敛半径,这个直接用书上的公式,两项相除求极限就可以了,极限是3,所以收敛半径R=3现在再来看端点处的熟练情况,x=3的时候就掠过啦,现在来说x=-3的情况,这是交错级数,一般的书上只给了一个
还是我来给你做吧
前两个题在我的blog第三个题不知所云,能不能说清楚一点
先求收敛半径.lim(n→∞)|(-1)^n*2^(n+1)/((-1)^(n-1)*2^n)|=2,所以收敛半径R=1/2.当x=1/2时,幂级数为∑(-1)^(n-1),是发散的;当x=-1/2时