∑Un收敛则∑{(Un)^1 2} n收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:37:34
∑Un收敛则∑{(Un)^1 2} n收敛
证明:若{Un}满足Lim(n→∞)nUn=1,则∞∑(n=1) (-1)^n(Un+Un+1)收敛

其实只需试着写两项就能发现关键了.那个级数写出来是-(U[1]+U[2])+(U[2]+U[3])-(U[3]+U[4])+...除了U[1]以外的项都两两消掉了.形式化的写出来是这样.考虑级数∑{1

已经知道 级数 ∑(un)^2 ∑(vn)^2 都收敛 证明 ∑(un+vn)^2 也收敛

(un+vn)^2=(un)^2+2unvn+(vn)^2《(un)^2+2|unvn|+(vn)^2《2[(un)^2+(vn)^2]级数∑(un)^2∑(vn)^2都收敛,所以级数2[(un)^2

设正项级数∑Un发散,Sn是Un的部分和数列,证明级数∑Un/Sn^2收敛.

正项级数Sn-S(n-1)=un>0,即Sn>S(n-1),所以un/Sn^2

收敛性判断!设正项极数∑Un收敛 则下列极数一定收敛的是:A ∑nUn B ∑√Un C ∑1/Un D ∑Un^2说明

∑Un和∑Un^2都是正项级数,且lim(n->∞)Un^2/Un=lim(n->∞)Un=0由比较法的极限形式知:级数∑Un收敛,则级数∑Un^2收敛.定理3(比较法的极限形式)请参见

设正项级数∑un和∑vn都收敛,证明:∑(un+vn)^2也收敛

由于当n趋于无穷时,un趋于0,vn趋于0,因此当n充分大时有0

证明:若级数 ∑Un^2及 ∑Vn^2收敛,则 ∑(Un/n)收敛

你有问题也可以在这里向我提问:

证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛

∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

设级数∑un收敛,证明∑(un+un+1)也收敛

这道题考察级数的两个性质:1.任意加上或去掉级数的有限想不改变它的收敛性.2.若级数∑an收敛,级数∑bn收敛,则级数∑(an+bn)也收敛.通项拆为两部分Un和U(n+1),已知∑Un收敛,而∑U(

证明若级数∑un满足(1)limun=0,(2)∑(u2n-1+u2n)收敛,则∑un收敛

参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

若∑(n=1) ∞ Un 收敛,求lim┬(n→∞) Un

若∑(n=1)∞Un收敛,那么lim(n→∞)Sn存在,设为S那么lim(n→∞)S(n-1)=Slim(n→∞)un=lim(n→∞)[Sn-S(n-1)]=lim(n→∞)Sn-lim(n→∞)S

若级数Un收敛于s 则级数(un+un+1)收敛于

由   ∑(n>=1)u(n)=s,可得   ∑(n>=1)[u(n)+u(n+1)]  =∑(n>=1)u(n)+∑(n>=1)u(n+1)  =2s-u(1).再问:(Un+Un+1)=(u1+u

若级数∑Un收敛于S,级数∑【un+un+1】则收敛于

∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始

已知∑Un收敛和∑Vn发散,判断∑(Un+Vn)的敛散性

∑(Un+Vn)肯定发散!证明:假如∑(Un+Vn)收敛,那么∑Vn=∑[(Un+Vn)-Un]=∑(Un+Vn)-∑Un,∑(Un+Vn)和∑Un都收敛,则它们的差∑Vn也收敛,这是和条件相抵触的,

级数Un^2收敛,证明Un收敛

这是错的.比如Un=1/n

设级数∑(n=1)Un收敛,且∑Un=u,则级数∑(Un+U(n+1))=?

∑(Un+U(n+1))=∑Un+∑Uk=(∑Un+∑Uk)-U1=2∑Un-U1=2u-U1再问:答案是2u-U0,U0好奇怪。再答:这个答案不应该是2u-U0.是2u-U1

若limun=0 则级数∑un 收敛么

不一定,判定一个涵数收敛除了极限,还有定义域.两个条件缺一不可

设∑Un绝对收敛 ∑Vn收敛 证明∑UnVn绝对收敛

要证∑unvn绝对收敛就是要证级数∑|unvn|=∑|un||vn|收敛,由于∑vn收敛,故数列{vn}有界(因为limvn=0),所以有|vn|≤M.根据级数的柯西收敛原理,由∑un绝对收敛可知,对

un收敛,那么un^2是否收敛

稍等,给你上个图.

∑ Un收敛,则∑ U2n收敛吗?反过来,∑u2n收敛,∑ Un收敛吗?

都不收敛.(1)un=(-1)^n/n∑Un收敛,∑U2n发散(2)取奇数项全为1,∑u2n收敛,∑Un发散再问:如果把∑U2n换成,∑(U2n-1+U2n)呢?再答:收敛再问:还有刚刚对于第二个问题

设数列un收敛于S,则级数un+1-un收敛于

lim(n->无穷)un=S=lim(n->无穷)u(n+1)lim(n->无穷)(u(n+1)-un)=0