∑是锥面Z=√(3(x2 y2))上被平面Z=3所截下的有限部分曲面
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:13:43
两个办法:一个是用积分,一个是用立体角①用积分用球面坐标,设半径r与z轴夹角为φ,r在XOY平面上投影与x轴夹角为θ则积分区域为:0≤r≤1,0≤φ≤π/4,0≤θ≤2π两曲面所围成立体体积为V=∫d
不需要那样做由z=√(x^2+y^2)和z^2=2x可得曲面在xoy平面的投影为Dxy:(x-1)^2+y^2≤1dz/dx=x/√(x^2+y^2),dz/dy=y/√(x^2+y^2)√((dz/
对于z=F(X,Y),A=∫∫DDA=∫∫D√[1+(FX)2+(Fy)的表面积2]DXDY锥面Z=√(X2+Y2)是圆柱形表面X2+Y2=2倍的切削积分区域D为:0≤X≤2,-√(2X-X2)1,0
对于z=f(x,y),曲面面积为A=∫∫DdA=∫∫D√[1+(əf/əx)²+(əf/əy)²]dxdy锥面z=√(x²+y
再问:三重积分可以表示为体积?
这题本应就是用到三重积分的思想,二重积分只是三重积分的简化而已
再问:函数)x^2+y^2不是在∑2上吗,也就是x^2+y^2=1,那不就是求曲面积分∫∫ds的弧长吗再答:空间区域的整个边界,你怎么看?再问:什么意思?我基础很差的再答:上面的那个面也是边界啊,所以
球坐标变换,然后得到:原积分=∫(0到2∏)dΘ∫(0到П)sinφdφ∫(0到1)r^4dr=2П*2*(1/5)=4П/5.
用球坐标算:原式=∫[0,2π]dθ∫[0,π/4]dφ∫[0,2](sinφcosθ+sinφsinθ+cosφ)^2*ρ^4sinφdρ=32(2-√2)π/5
Gauss公式.∂P/∂x+∂Q/∂y+∂R/∂z=1+1+2z-2=2z∫∫Σxdydz+ydzdx+(z²-2z)
再问:我漏了平面的了。还有一道题!再答:说来看看,不过要确保那个曲面是有限的
按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,降幂正好相反,常数项应放在最前面.多项式x5y2+2x4y3-3x2y2-4xy中,x的指数依次5、4、2、1;因此A不正确;y的指数依次是2
∫∫∑e^z/√(x^2+y^2)dxdyə[e^z/√(x^2+y^2)]/əz=e^z/√(x^2+y^2)=∫∫∫Ωe^z/√(x^2+y^2)dxdydz=∫[0,2π]d
/>要求锥面z=√(x^2+y^2)与柱面z^2=2x所围立体在xoz面的投影可以分开求锥面z=√(x^2+y^2)在xoz面的投影,和柱面z^2=2x在xoz面的投影,这两个投影重叠部分即为锥面z=
被积函数是e^z/√(x^2+y^2)Gauss公式,三重积分用截面法Ω:1≤z≤2,x^2+y^2≤z^2I=∫∫∫e^z/√(x^2+y^2)dxdydz=∫e^zdz∫∫1/√(x^2+y^2)