∞n=1 e-√N收敛性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:32:22
假设数列an是收敛的,那么有lim(n→∞)Sn=C(C是常数).那么lim(n→∞)an=lim(n→∞)(S(n+1)-Sn)=lim(n→∞)S(n+1)-lim(n→∞)Sn=C-C=0.所以
lim(n→∞)[1/(n-lnn)]/(1/n)=1又lim(n→∞)[1/(n-lnn)]=0u(n+1)-un
利用根式判别法,lim(n→∞)(2^n*n!/n^n)^(1/n)=lim(n→∞)(2*(n!)^(1/n))/n=2/e<1,所以原级数收敛.
(n/n+1)^(n^2)=[(1-(1/(n+1)))^(n+1)]^(n^2/(n+1))(1/e)^(n-1)是收敛的.
只找以充分大的N,使n>N时,一般项单调就行.也就是说x≥3是一个充分条件,对判断级数收敛够用就行.你取x≥2也是可以的,没问题.你心情不好取x≥10000000000,都能得到正确的判定结果.
/>由于当n为任意正整数时,(1+1/n)^na(n)S(n)=a(1)+a(2)+……+a(n)>n*a(1)=n*en*e在n趋向无穷大时无穷大,所以S趋向无穷大,即发散
收敛(2n-1)!/n!=(1/1)*(3/2)*(5/3)*……*[(2n-1)/n](2n-1)!/(n!*3^n)
该级数发散,分析如图,
跟1/n的求和去比较吧.1/3+1/4+...1/n...发散,所以1/ln3+1/ln4...+1/ln(n).发散,因为后者每项都大于前者
达伦贝尔判别法,结果是e/3再问:可以给我写一下详细的步骤吗?实在是辛苦了,我不太懂。如果能用图画写出来,发图就实在是太太感谢了再答:
级数的通项(n+1)/n^2>n/n^2=1/n,以1/n为通项的级数是发散的,所以根据比较判别法原级数是发散的.
1/n发散,e^-n^2收敛,所以整个级数发散e^-n的收敛性是很强的,强于所有的p级数
解lim(n→∞)【3^(n+1)/(n+1)!】/【(3^n)/(n!)】}=lim(n→∞)【3/n+1】=0
a^n/(1+a^n)=1/(1+(1/a)^n)所以当|a|
判断∑an是否收敛,你这算的是an随n变化,有很多an虽然收敛,但是∑an却能趋于∞.比如∑(1/n),1/n减小的很快,但是∑(1/n)却是等于无穷的.
我回答过一次了由于当n为任意正整数时,(1+1/n)^na(n)S(n)=a(1)+a(2)+……+a(n)>n*a(1)=n*en*e在n趋向无穷大时无穷大,所以S趋向无穷大,即发散请问你的通项是e
发散;因为:lim[1/ln^10n]/[1/n]=limn/[ln^10n]=limx/[ln^10x]=lim1/[(10ln^9x)*1/x]=limx/[(10ln^9x)]=……=+∞而∑1