∫(1 1-x^2)ln(1 x 1-x)dx求不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:18:39
∫ln(1+x²)dx=x•ln(1+x²)-∫xdln(1+x²)=xln(1+x²)-∫x•1/(1+x²)•
limx[ln(2x+1)-ln(2x)]=limx[ln(2x+1)/2x]=limln[1+1/2x]^x=limln[1+1/2x]^(2x.1/2)=limlne^(1/2)=1/2
∫ln(x+√(1+x^2))dxletx=tanadx=(seca)^2da∫ln(x+√(1+x^2))dx=∫(seca)^2ln(tana+seca))da=∫ln(tana+seca))d(
不对,用分部积分法可以算出来
-10f(x)单调递增,所以f(x)的最小值=f(0)=1.0=f(0)=1f(x2-x1)=e^(x2-x1)-ln(x2-x1+1)>1,即e^(x2-x1)>1+ln(x2-x1+1),又x2-
∫dx/[x√(1-(lnx)^2)]=∫dlnx/√(1-(lnx)^2)=arcsin(lnx)+C
设f(x)=ln(x+1/a)-ax,(−1/a0,函数在(−1/a,+∞)上是增函数,此时f(x)=0最多只有一个零点,不满足题意,故排除;②当a>0时,ax+1>0,令f'
用分部积分法,(uv)'=u'v+uv',设u=ln(1+x^2),v'=1,u'=2x/(1+x^2),v=x,原式=xln(1+x^2)-2∫x^2dx/(1+x^2)=xln(1+x^2)-2∫
∫x[ln(x²+2)-ln(2x+1)]dx=∫xln(x²+2)dx-∫xln(2x+1)dx=(1/2)∫ln(x²+2)d(x²)-(1/2)∫ln(2
(1)f′(x)=11+x-1(1+x)2=x(1+x)2,x>-1当-1<x<0时,f′(x)<0,f(x)在(-1,0)上单调递减,当x=0时,f′(x)=0,当x>1时,f′(x)>0,f(x)
原式=∫(1+ln^2x)d(lnx)令lnx=u上式化为∫(1+u^2)du=u+u^3/3+c=lnx+(lnx)^3/3+c
(2ln(1+x))/(1+x)
当中那个式子有问题,应该等于=-∫(ln(x+1)-lnx)d(ln(x+1)-lnx),有个负号再问:恩我主要想知道最后答案是怎么得出来的再答:有个公式:∫f(x)d[f(x)]=[f(x)]^2/
∫ln^2x/x(1+ln^2x)dx=∫(ln^2x+1-1)/(1+ln^2x)d(lnx)=lnx-arctan(lnx)+c
1.f’(x)=2x+a/(1+x)=0,2x^2+2x+a=0有不等的实根,4-8a>0,a
f(x)=ln1/x-ax2+x(a>0)的定义域是x>0.f'(x)=-1/x-2ax+1=(-2ax^2+x-1)/x=[-2a(x-1/4a)^2+1/8a-1]/x当a>=1/8,即1/8a-
ln(x^2-1)=ln(x+1)+ln(x-1)∫ln(x^2-1)dx=∫ln(x+1)d(x+1)+∫ln(x-1)d(x-1)分部积分:原式=(x+1)ln(x+1)-∫(x+1)d(ln(x
∫1+x^2ln^2x/xlnxdx=∫1/xlnxdx+∫xlnxdx分开积分就行了.