∫(1-x∧2)1 2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:31:09
=x^18+x^15+x^12+x^9+x^6+x^3+1+x^3-1+5-4分解因式把下面的18换成21就是了=(x^18+1)+(x^15+1)+(x^12+1)+(x^9+1)+(x^6+1)+
1x+2x+3x+4x+5x+6x+7x+8x+9x+10x+11x+12x+13x+14x+15x=550120x=550x=55/12=4.583
原式=-ln(1+x)/x+∫dx/[x(1+x)](应用分部积分法)=-ln(1+x)/x+∫[1/x-1/(1+x)]dx=-ln(1+x)/x+ln│x│-ln(1+x)+C(C是任意常数).
2x(x-1)-x(3x+2)=-x(x+2)-122x^2-2x-3x^2-2x=-x^2-2x-122x^2-3x^2+x^2-2x-2x+2x=-12-2x+12=0-2(x-6)=0x-6=0
∫(x^4/(x^2+1))dx=∫((x^4-1+1)/(x^2+1))dx=∫((x^4-1)/(x^2+1))dx+∫(1/(x^2+1))dx=∫((x^2-1)*(x^2+1)/(x^2+1
亲爱的楼主:∫(1-1/x^2)e^(x+1/x)dx其中因为(x+1/x)'=1-1/x^2则d(x+1/x)=(1-1/x^2)dx原式=∫e^(x+1/x)d(x+1/x)=e^(x+1/x)+
∫(3x+1/x∧2)dx=-∫(3x+1)d(1/x)=-(3x+1)/x+∫(1/x)d(3x+1)=-(3x+1)/x+1/3∫(1/x)dx=-(3x+1)/x+1/3ln|x|+c回答完毕!
每个绝对值里都是正数所以原式=x+1+x+3+x+5+……+x+13-x-2-x-4-x-6-……-x-12=x-1*6+13=x+7=π/2+7
x平方-6x+8=x²-2×3x+9-9+8=(x-3)²-1=(x-3-1)(x-3+1)=(x-4)(x-2)x平方+x-6=(x-2)(x+3)12+x-x平方=(4-x)(
1.用平方差公式:(z²-x²-y²)²-4x²y²=[(z²-x²-y²)-2xy][(z²-x&
60X+15X+10X+6X=12091X=120X=120/91
x/2+x/6+x/12+x/20+x/30+x/42=136x/42=1x=7/6
(3x-2)(3x+2)-x(5x+1)>(2x+1)²9x²-4-5x²-x>4x²+4x+14x+1
原式化简:{(x-3)(x-2)/(x-3)(x-4)}²÷{(x+1)(x+2)/(x-4)(x+2)}²{(x-2)/(x-4)}²÷{(x+1)/(x-4)}
答:f(x)=x^3-x(-2x+x^2-1)=x^3+2x^2-x^3+x=2x^2+x=2(x+1/4)^2-1/8当且仅当x=-1/4时,f(x)取得最小值-1/8
分步写,好让看的清楚符号[√(x^2-6x+9)/x^2-x-12]=√(x-3)^2/(x-4)(x+3)=(x-3)/(x-4)(x+3);(x^3-16x)/(x^2-3x)=x(x^2-16)
原式=(x-1)(x^15+x^14+……+1)/(x-1)=(x^16-1)/(x-1)=(x^8+1)(x^4+1)(x²+1)(x+1)(x-1)/(x-1)=(x^8+1)(x^4+
x^3+x-30(分解因式)=(x^3-27)+(x-3)=(x-3)(x^2+3x+9)+(x-3)=(x-3)(x^2+3x+9+1)=(x-3)(x^2+3x+10);x^12-y^12;=(x
令x=tanu,则dx=sec²tdt∫1/[x√(1+x²)]dx=∫1/[tanu·√(1+tan²x)]·sec²tdt=∫cscudu=-ln|cscu
答:结论是无解的设1和4中间的正方形边长为x则左边中间的正方形边长为x+1左下角边长为x+1+x=2x+1所以:右下角正方形边长2x+1+x-4=3x-3所以:最大的正方形底部边长=2x+1+3x-3