∫(2x-1) (x²-x 3)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:35:41
∫(2x-1) (x²-x 3)dx
化简并求值:3x3-[x3+(6x2-7x)]-2(x3-3x2-4x)其中x=-1.

原式=3x3-(x3+6x2-7x)-2x3+6x2+8x,=3x3-x3-6x2+7x-2x3+6x2+8x,=15x,当x=-1时,原式=15x=15×(-1)=-15.

x乘x4次方+x2次方(x3次方-1)-2x3次方(x+1)的2次方求解析

x乘x4次方+x2次方(x3次方-1)-2x3次方(x+1)的2次方=x^5+x^5-x^2-2x^3(x^2+2x+1)=x^5+x^5-x^2-2x^5-4x^4-2x^3=-4x^4-2x^3-

f(x-1)=x3-3x2+2x,求f(x)的解析式

f(x-1)=x(x-1)(x-2)=[(x-1)+1](x-1)[(x-1)-1]所以f(x0=(x+1)x(x-1)=x³-x再问:请问第二步是怎么转换来的表示看不懂--再答:凑x-1采

x2+x=1求x3+2x2-7

解题思路:吸纳化简,根据已知条件,整体代入可解。解题过程:

已知函数f(x)=x3+bx2+cx+d在区间[-1,2]上是减函数,那么b+c(  )

由f(x)在[-1,2]上是减函数,知f′(x)=3x2+2bx+c≤0,x∈[-1,2],则f′(−1)=3−2b+c≤0f′(2)=12+4b+c≤0⇒15+2b+2c≤0⇒b+c≤-152.故选

1、X的三次方加X减2 (X3+X-2) 2、X的三次方减2X减4 (X3-2X-4) 因式分解

1、原式=x³-x+2x-2=x(x+1)(x-1)+2(x-1)=(x-1)(x²+x+2)2、原式=x³-2x²+2x²-2x-4=x²

因式分解(1+x+x2+x3)2-x3

(1+x+x^2+x^3)^2-x^3设y=1+x+x^2,则(x^3-1)=(x-1)*(1+x+x^2)=(x-1)*y,原式=(y+x^3)^2-x^3=y^2-2*y*x^3+x^6-x^3=

已知总体X的概率分布为P(X=i)=1/3,i=1,2,3.(X1,X2,X3)为来自X的样本,求E[x(1)],D[x

首先题目的意思是123三个数字,每个数字出现的可能性是一样的.然后现在是三个数字弄排列组合成一个三个数字组成的数组.那么用树状图就可以得出一共有27种组合的方式.E(X(1))的意思是求最小的那个数的

3-X2+X-1分之X4+X3-2乘以x3+2x2+2x+2分之X四次方-1除以-2分之X3-X-X2+1化简

这道题,谁要是能理解是什么式子,就已经是大神了

因式分解x3-x2-x-1

x³-x²-x-1=(x³-x)-(x+1)=x(x²-1)-(x+1)=x(x+1)(x-1)-(x+1)=(x²-x-1)(x+1)

2x3-3x+三分之二x3-2x-三分之四x3+x-1,其中x=-二分之一

2x3-3x+三分之二x3-2x-三分之四x3+x-1=4/3x3-4x-1=4/3x(-1/2)3+4x1/2-1=-4/3x1/8+2-1=1-1/6=5/6

已知函数f(x)=x3+bx2+cx+d的零点x1,x2,x3满足-2

f'(x)=3x^2+2bx+c说明原函数图象先增后减再增画出大致图象可知:f(-2)0f(0)

已知函数f(x)=x3+bx2+cx+d在点(0,f(0))处的切线方程为2x-y-1=0

f‘(x)=3x^2+2bx+c,k=f’(0)=c,切线斜率为2,因此c=2,又f(0)=d,将(0,d)代入切线方程得d=-1

已知函数f(x)=x3+bx2+cx+d

解题思路:复数解题过程:见附件最终答案:略

证明:(x3+5x2+4x-1)-(-x2-3x+2x3-3)+(8-7x-6x2+x3)的值与x无关.

原式=x3+5x2+4x-1+x2+3x-2x3+3+8-7x-6x2+x3=10,故与x无关.

奇函数f(x)=x3+bx2+cx+d和y=4x+2相切,求f(x)

由奇函数得:b=0,d=0f(x)=x3+cxf'(x)=3x^2+c和y=4x+2相切,设切点是(m,n)那么有:n=4m+2f'(m)=3m^2+c=4f(m)=m^3+cm=nm^3+cm=4m

x3 -x2- x- 2 因式分解

(x-1)(x^2+ax+2)=x^3+ax^2+2x-x^2-ax-2=x^3+(a-1)x^2+(2-a)x-2=0a-1=-12-a=-1不合理(x-2)(x^2+ax+1)=x^3+ax^2+

分解因式:-27x3+8 ,(x2-5x+2)(x2-5x+4)-24 ,x5+x4+x3+x2+x1+1

-27x^3+8=2^3-(3x)^3=(2-3x)(4+6x+9x^2)(x^2-5x+2)(x^2-5x+4)-24=(x^2-5x)^2+6(x^2-5x)+8-24=(x^2-5x)^2+6(