∫0--∞xe^xdx反常积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:29:44
∫0--∞xe^xdx反常积分
反常(广义)积分 xe^(-x^2) 范围是0到正无穷

反常(广义)积分xe^(-x^2)范围是0到正无穷=∫-1/2e^(-x^2)d(-x^2)=-1/2e^(-x^2)(下标O,上标+无穷大)=-1/2(1/e)^x^2(下标0,上标+无穷大)=0+

求反常积分∫(-∞,0)xe∧(-x)dx

∫xe^(-x)dx=-∫xe^(-x)d(-x)=-∫xd[e^(-x)]=-xe^(-x)+∫e^(-x)dx=-xe^(-x)-e^(-x)+C=-(x+1)e^(-x)+C显然,∫(-∞,0)

求定积分∫上限π下限0 cos xdx

∫(0->π)cosxdx=sinx(0->π)=sin(π)-sin(0)=0-0=0

定积分求指导解题步骤:∫(0→∞) xe^-x(z+1)dx

对(1)作变量替换x(z+1)=t,可得到其结果为Γ(2)/(z+1)^2,(2)题也一样,其实还可以联想到拉氏变换的内容

计算定积分:∫(0,π) cos²xdx

∫[0,π]cos²xdx=∫[0,π](1+cos2x)/2dx=(x/2+sin2x/4)[0,π]=π/2

计算反常积分,∫xe^(-x)dx 积分区间是0到+∞ (答案到底是1还是-1

∫(0,+∞)xe^(-x)dx=-∫(0,+∞)xe^(-x)d(-x)=-∫(0,+∞)xde^(-x)=-xe^(-x)|(0,+∞)+∫(0,+∞)e^(-x)dx=-∫(0,+∞)e^(-x

求反常积分的一道题求∫(0,+oo) xe^-x/(1+e^-x)^2 dx.原式=∫(0,+oo)xd(1/1+e^-

你的计算正确,最后还需计算一个∞-∞型的极限上限:lim[x→+∞]xe^x/(e^x+1)-ln(1+e^x)=lim[x→+∞]x-[x/(e^x+1)]-ln(1+e^x)=lim[x→+∞]l

积分:∫∞,a xe^[-(x-a)]dx

不定积分∫xe^[-(x-a)]dx=∫xe^(a-x)dx=-∫xe^(a-x)d(a-x)=-∫xd(e^(a-x))=-xe^(a-x)+∫e^(a-x)dx=-xe^(a-x)-∫e^(a-x

求定积分:上限是(ln2)下限是(0)xe^-xdx

∫(0,ln2)xe^(-x)dx=∫(0,ln2)(-x)e^(-x)d(-x)=∫(0,ln2)(-x)d(e^(-x))=(-x)e^(-x)|(0,ln2)-∫(0,ln2)e^(-x)d(-

广义积分∫+∞1xe-x2dx=(  )

广义积分∫+∞1xe-x2dx=12∫+∞1e−x2dx2=−12e−x2|+∞1=−12limx→+∞e−x2+12e=12e故选:A.

求不定积分 ∫xe^2xdx

1/2∫e^2xdx=1/4∫e^2xd2x是因为dx变为d2x了dx=(1/2)d2x1/2∫e^2xdx=1/2∫e^2x(1/2)d2x=1/4∫e^2xd2x

求定积分∫上1下0xe^xdx的值

补充楼上∫[0,1]xe^xdx=∫[0,1]xde^x=xe^x|[0,1]-∫[0,1]e^xdx=xe^x[0,1]-e^x|[0,1]=e-(e-1)=1

∫(0,+∞)xe^-xdx和∫(1,-1)dx/根号(1-x∧2),

第一题;∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C符号太繁琐,带入符号和数字即可.第二题用三角代换,x=tant,t属于(-PI/4,PI/4)

求教,∫xe^(-x^2)dx在(0,+∞)的定积分

这个是广义积分∫xe^(-x^2)dx在(0,+∞)的定积分不妨取a→+∞∫xe^(-x^2)dx在(0,a)的定积分=-1/2e^(-x^2)](0,a)所以所求是lim(a→+∞)[-1/2e^(

求不定积分∫(0~+∞)xe^xdx

你那个是反常积分,不定积分如下:∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C

跪求广义积分 ∫(0→+∞)xe^(-2x)dx

e上面的符号是啥啊,没见过啊.再问:

求解反常积分:∫(-∞,0) e^(-x) dx

原式=-e^(-x)|[-∞,0]=1-∞=-∞