∫0--∞xe^xdx反常积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:29:44
反常(广义)积分xe^(-x^2)范围是0到正无穷=∫-1/2e^(-x^2)d(-x^2)=-1/2e^(-x^2)(下标O,上标+无穷大)=-1/2(1/e)^x^2(下标0,上标+无穷大)=0+
∫xe^(-x)dx=-∫xe^(-x)d(-x)=-∫xd[e^(-x)]=-xe^(-x)+∫e^(-x)dx=-xe^(-x)-e^(-x)+C=-(x+1)e^(-x)+C显然,∫(-∞,0)
∫(0->π)cosxdx=sinx(0->π)=sin(π)-sin(0)=0-0=0
对(1)作变量替换x(z+1)=t,可得到其结果为Γ(2)/(z+1)^2,(2)题也一样,其实还可以联想到拉氏变换的内容
∫[0,π]cos²xdx=∫[0,π](1+cos2x)/2dx=(x/2+sin2x/4)[0,π]=π/2
∫(0,+∞)xe^(-x)dx=-∫(0,+∞)xe^(-x)d(-x)=-∫(0,+∞)xde^(-x)=-xe^(-x)|(0,+∞)+∫(0,+∞)e^(-x)dx=-∫(0,+∞)e^(-x
你的计算正确,最后还需计算一个∞-∞型的极限上限:lim[x→+∞]xe^x/(e^x+1)-ln(1+e^x)=lim[x→+∞]x-[x/(e^x+1)]-ln(1+e^x)=lim[x→+∞]l
不定积分∫xe^[-(x-a)]dx=∫xe^(a-x)dx=-∫xe^(a-x)d(a-x)=-∫xd(e^(a-x))=-xe^(a-x)+∫e^(a-x)dx=-xe^(a-x)-∫e^(a-x
∫(0,ln2)xe^(-x)dx=∫(0,ln2)(-x)e^(-x)d(-x)=∫(0,ln2)(-x)d(e^(-x))=(-x)e^(-x)|(0,ln2)-∫(0,ln2)e^(-x)d(-
广义积分∫+∞1xe-x2dx=12∫+∞1e−x2dx2=−12e−x2|+∞1=−12limx→+∞e−x2+12e=12e故选:A.
∵(e^x)'=e^x,x'=1∴dv=(e^x)'dx=e^xdxdu=x'dx=dx
1/2∫e^2xdx=1/4∫e^2xd2x是因为dx变为d2x了dx=(1/2)d2x1/2∫e^2xdx=1/2∫e^2x(1/2)d2x=1/4∫e^2xd2x
补充楼上∫[0,1]xe^xdx=∫[0,1]xde^x=xe^x|[0,1]-∫[0,1]e^xdx=xe^x[0,1]-e^x|[0,1]=e-(e-1)=1
第一题;∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C符号太繁琐,带入符号和数字即可.第二题用三角代换,x=tant,t属于(-PI/4,PI/4)
这个是广义积分∫xe^(-x^2)dx在(0,+∞)的定积分不妨取a→+∞∫xe^(-x^2)dx在(0,a)的定积分=-1/2e^(-x^2)](0,a)所以所求是lim(a→+∞)[-1/2e^(
你那个是反常积分,不定积分如下:∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C
e上面的符号是啥啊,没见过啊.再问:
原式=-e^(-x)|[-∞,0]=1-∞=-∞