∫1 x(lnx)kdx收敛性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:53:45
x/(x-lnx)做法:分子化为(x-lnx)+(1-x),这样积分化为2个,∫(x-lnx)/(x-lnx)^2dx+∫(1-x)/(x-lnx)^2dx=∫1/(x-lnx)dx+∫xd1/(x-
极限测试法.前提是∫(1→∞) (lnx)^p/x² dx也收敛,如果是发散的话便一起发散.
参考答案:与肝胆人共事,无字句处读书
设u=ln(1+x)-lnx.∫[ln(1+x)-lnx]/x(1+x)dx=-∫udu=-1/2u²+C=-1/2[ln(1+x)-lnx]²+C
∫dx/x根号(1+lnx)=∫1/根号(1+lnx)d(1+lnx)=2根号(1+lnx)+c再问:=∫1/根号(1+lnx)d(1+lnx)为什么=2根号(1+lnx)+c再答:∫dx/x根号(1
显然对于不定积分来说,∫dx/(x-1)^3/2=-2/(x-1)^1/2+C(C为常数)而这里定积分∫(0,3)dx/(x-1)^3/2的范围是0到3,显然在x=1的时候,-2/(x-1)^1/2是
1是瑕点,由于:亅(0,1)1/(x-1)^2dx=(-1/(x-1))|(0,1)=无穷,故广义积分发散
1/x(x+1)=1/x-1/(x+1)所以原式=∫[(ln(x+1)-lnx]*[1/x-1/(x+1)]dx=∫[(ln(x+1)-lnx]d[lnx-(ln(x+1)]=-∫[lnx-ln(x+
∫1/(x*lnx)dx=∫lnxdlnx=1/2*(lnx)^2
其实1/[x(x+1)]=(1/x)-1/(1+x)只不过是换了一种表达方式和位置而已
1首先证明lim[x^(1/x)]=1,x->正无穷lim(lnx/x)=lim(1/x)(罗必达法则)=0lim[x^(1/x)]=lim[exp(lnx/x)]=exp0=1lim[1/(n^(1
x/(x-lnx)做法:分子化为(x-lnx)+(1-x),这样积分化为2个,∫(x-lnx)/(x-lnx)^2dx+∫(1-x)/(x-lnx)^2dx=∫1/(x-lnx)dx+∫xd1/(x-
∫lnx/[x√(1+lnx)]dx令t=√(1+lnx),则lnx=t^2-1,x=e^(t^2-1),代入得∫lnx/[x√(1+lnx)]dx=∫lnx/[√(1+lnx)]d(lnx)=∫(t
化为二重积分来讨论:∫[0->1](x^(p-1)-x^(q-1))dx/lnx=∫[0->1]dx∫[q->p]x^(y-1)dy=∫[q->p]dy∫[0->1]x^(y-1)dx=∫[q->p]
∫1+lnx/x*dx=∫1/x*dx+∫lnx/x*dx=lnx+∫lnxdlnx=lnx+(lnx)^2+c再问:请问这是完整答案吗,因为本人是数学白痴,不好意思再答:是的完整的答案
上下同时处以x^2,∫[(1+lnx)/x^2]/[(x+lnx)/x]^2dx=∫1/[(x+lnx)/x]^2d[(x+lnx)/x],这就变成了∫1/ada型,结果为ln|a|+c,将a换掉即可
这题不用分部积分啊∫1/(x*lnx)dx=∫1/lnxd(lnx)=ln|lnx|+C
∫x(1+lnx)dx=∫(1+lnx)d(x²/2)=(1/2)x²(1+lnx)-(1/2)∫x²d(1+lnx)=x²/2+(1/2)x²lnx
(lnx))/(x+lnx)开始我试着用凑微分的方式做,无果.然后我观察了下,由于是(x+lnx)^2做分母,所以认为是一个以(x+lnx)为分母的分式,设分子为(Ax+Blnx).求导,待定系数求出