∫2x (1 x^2)dx求不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:26:05
请采纳再答:
∫(3x^2-2x+2)dx=x^3-x^2+2x+C∫(2x-1)^2dx=∫4x^2-4x+1dx=4*x^3/3-4*x^2/2+x+C=4/3*x^3-2x^2+x+C
∫(arctanx)/(x^2(x^2+1))dx=∫(arctanx)/x^2dx-∫(arctanx)/(x^2+1)dx=∫(arctanx)d(1/x)-∫(arctanx)darctanx=
∫x/(1+x²)dx=∫d(x²/2)/(1+x²)=(1/2)∫d(x²+1)/(1+x²)=(1/2)ln(1+x²)+C∫cos
∫1/(x^2+2x+5)dx=∫1/[(x+1)^2+4]dx=∫(1/4)/[[(x+1)/2]^2+1]dx=∫(1/4)·2/[[(x+1)/2]^2+1]d((x+1)/2)=(1/2)∫1
1/4*Ln(2x+1)+1/(4(2x+1))√(x²+4)再问:没看懂上面是两道题再答:知道啊,不是有两答案嘛就是换元法,两个属于同一类。将分母中的1+2x和x²+4换元,再进
1∫(1/x)sin(lnx)dx=∫sin(lnx)dlnx=-cos(lnx)+C2∫3^(-x/2)dx=-2*3^(-x/2)/ln3+C3∫(x+1)f'(x)dx=f(x)*(x+1)-∫
令(1+2x)/[x(x+1)]=A/x+B/(x+1)令x=0,A=(1+0)/(0+1)=1令x=-1,B=(1-2)/(-1)=1∴(1+2x)/[x(x+1)]=1/x+1/(x+1)∫(1+
sysxabf1=x+1;f2=0.5*x^2;int(f1,0,1)+int(f2,1,2)f=exp(ax)*sin(bx)inf(f)
很简单啊,好好观察形状就好解了
∫x^2/(1-x^2)dx=∫[1/(1-x^2)-1]dx=∫[(1/2)/(1+x)+(1/2)/(1-x)-1]dx=(1/2)ln│(1+x)/(1-x)│-x+C(C是积分常数);∫1/(
∫(arctanx)/(x^2(x^2+1))dxletx=tanadx=(seca)^2da∫(arctanx)/(x^2(x^2+1))dx=∫[a/(tana)^2]da=-∫ad(cota+a
设u=(x^2-1)^(1/2),则x^2=u^2+1dx^2=d(u^2+1)=2udu∫[(x^3)/(x^2-1)^(1/2)]dx=∫[(x^2)/[2(x^2-1)^(1/2)]]dx^2=
x⁴/(x²+1)=x²(x²+1-1)/(x²+1)=x²-x²/(x²+1)=x²-(x²+1
∫(x^2-3x)/(x+1)dx=∫[(x+1)(x-4)/(x+1)+4/(x+1)]dx=∫(x-4)dx+∫4/(x+1)dx=x²/2-4x+4ln(x+1)+C其中C为任意常数
(2x+1)e^(-x)+cln|x+√(x^2-1)|+c再问:第一个的结果没有负号么?第二个求过程……再答:
解∫x/(x^2)dx=∫1/xdx=ln|x|+C
∫(2x+1)dx=∫2xdx+∫dx=x^2+x+C