∫Ae∧(-x∧2)dx=1,求A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 09:52:57
∫Ae∧(-x∧2)dx=1,求A
∫dx/(1+√(1-x^2))=? ∫tan^4(x)dx=?

1、令x=sinθ,dx=cosθdθ∫dx/[1+√(1-x²)]=∫cosθ/(1+cosθ)dθ=∫(cosθ+1-1)/(1+cosθ)dθ=∫dθ-∫1/(1+cosθ)·(1-c

如果∫f(x)dx=x∧3+C,求∫xf(1-x∧2)dx

∫f(x)dx=x^3+C那么∫xf(1-x^2)dx=0.5∫f(1-x^2)dx^2=-0.5∫f(1-x^2)d(1-x^2)于是套用条件中的式子=-0.5(1-x^2)^3+C,C为常数

计算积分∫In(1+x)/(x∧2)dx

原式=-ln(1+x)/x+∫dx/[x(1+x)](应用分部积分法)=-ln(1+x)/x+∫[1/x-1/(1+x)]dx=-ln(1+x)/x+ln│x│-ln(1+x)+C(C是任意常数).

已知∫f(x)dx=xf(x)-∫x/√(1+x^2)dx,则f(x)=

∫f(x)dx=xf(x)-∫xdf(x)∫f(x)dx=xf(x)-∫xdx/√(1+x^2)df(x)=dx/√(1+x^2)f(x)=∫dx/√(1+x^2)=ln|x+√(1+x^2)|+Cx

∫ x/(1+X^2)dx=

=1/2∫1/(1+x^2)d(1+x^2)=1/2ln(1+x^2)+c

∫(x∧4/x∧2+1)dx

∫(x^4/(x^2+1))dx=∫((x^4-1+1)/(x^2+1))dx=∫((x^4-1)/(x^2+1))dx+∫(1/(x^2+1))dx=∫((x^2-1)*(x^2+1)/(x^2+1

∫e∧√(2x+1)dx

令t²=2x+1,2tdt=2dx∫e^√(2x+1)dx=∫e^t*tdt=∫tde^t=te^t-∫e^tdt=te^t-e^t+C=(t-1)e^t+C=[√(2x+1)-1]e^√(

∫(1-1/x∧2)e∧(x+1/x)dx

亲爱的楼主:∫(1-1/x^2)e^(x+1/x)dx其中因为(x+1/x)'=1-1/x^2则d(x+1/x)=(1-1/x^2)dx原式=∫e^(x+1/x)d(x+1/x)=e^(x+1/x)+

求积分∫ (3x+1/x∧2)dx

∫(3x+1/x∧2)dx=-∫(3x+1)d(1/x)=-(3x+1)/x+∫(1/x)d(3x+1)=-(3x+1)/x+1/3∫(1/x)dx=-(3x+1)/x+1/3ln|x|+c回答完毕!

∫xln(x∧2+1)dx

答:∫ xln(x∧2+1)dx=(1/2) ∫ ln(x^2+1) d(x^2+1)=(1/2)*(x^2+1)*[ln(x^2+1)-1]+C再问:���˵

求三道不定积分∫√(1+sinx)dx,∫1/(x∧2+4x-5)dx,

1+sinx=1+cos(π/2-x)=2cos²(π/4-x/2)1/(x²+4x-5)=1/[(x+5)(x-1)]=[1/(x-1)-1/(x+5)]·1/6(3x+1)/(

用换元法解∫dx/x√1+x∧2

令x=tanu,则dx=sec²tdt∫1/[x√(1+x²)]dx=∫1/[tanu·√(1+tan²x)]·sec²tdt=∫cscudu=-ln|cscu

∫xcos(1+x^2)dx=

原式=0.5∫cos(1+x²)d(x²)=0.5sin(1+x²)+C再问:能给下过程么?3Q再答:这都是可以直接积分的,xdx=0.5d(x²)=0.5d(

∫dx/x∧2√x求不定积分

∫dx/[x^2.√x]=∫x^(-5/2)dx=-(2/3)x^(-3/2)+C

求∫(1╱x∧2)dx

∫(1╱x∧2)dx=-1/x+C(C为常数)您好,很高兴为您解答,skyhunter002为您答疑解惑如果本题有什么不明白可以追问,如果满意记得采纳如果有其他问题请采纳本题后另发点击向我求助,答题不