∫Lxydx (y-x)dy沿曲线y=x^3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:59:37
∫Lxydx (y-x)dy沿曲线y=x^3
计算∫L(x^2+3y)dx+(y^2-x)dy

P=x^2+3y,Q=y^2-xPy=3Qx=-1∫L(x^2+3y)dx+(y^2-x)dy+∫AO(x^2+3y)dx+(y^2-x)dy=-4∫∫Ddxdy=-16π∫AO(x^2+3y)dx+

变换积分次序∫(0,1)dy∫(-y,1+y^2)f(x,y)dx

原式=∫(-1,0)dx∫(-x,1)f(x,y)dy+∫(0,1)dx∫(0,1)f(x,y)dy+∫(1,2)dx∫(√(x-1),1)f(x,y)dy.

求解微分方程.∫(dy/dx)=e^(x+y)

(dy/dx)=e^(x+y)(dy/dx)=e^x*e^y分离变量dy/e^y=e^xdx两边积分-e^(-y)=e^x+C1则-y=ln(C-e^x)整理得y=-ln(C-e^x)

∫(1,2)dx∫(√x,x)sin(πx/2y)dy+∫(2,4)dx+∫(√x,2)sin(πx/2y)dy

你得先把积分区域画出来,然后看图改变积分顺序.积分区域是y=x,y=√x,和y=2围成的区域.所以原式=∫(1,2)dy∫(y,y∧2)sin(πx/2y)dx=(4π8)/π∧3

dy/dx=-(x+y)/x通解

设y=ux,dy/dx=u+xdu/dx原式化为u+xdu/dx=-1-udu/(1+2u)=-dx/x(1/2)ln|1+2u|=-ln|x|+lnC11+2y/x=C2/x^2x^2+2xy=C

dy/dx-y/x=x^2

这是一阶常微分方程1、通解部分dy/dx-y/x=0dy/y=dx/x两边积分lny=lnx+cy=cx2、求特解y=x*M(x)dy/dx=M(x)+x*M'(x)dy/dx-y/x=2x^2M(x

(x^2)dy+(y^2)dx=dx-dy

(x^2+1)dy=(1-y^2)dxdy/(1-y)(1+y)=dx/(x^2+1)1/2lnl(y-1)/(y+1)l=arctanx+c再问:在帮我一个,我给再加五分,y′=y,y(0)=1.谢

∫(x^2-y)dx+(x+siny)dy

首先对于这样的第二类线性积分,参数方程很重要x=2(cost)^2y=2sint*costπ/4≤t≤π/2然后就用曲线积分公式你可以用这个思路再问:用格林公式怎么做

微分方程(x+y)(dx-dy)=dx+dy的通解

两边同除以dx,整理后得到dy/dx=(x+y-1)/(x+y+1),然后转化一下,d(x+y)/dx=2(x+y)/(x+y+1).设u=x+y,得到du/dx=2u/(u+1).以下略.结果:x-

计算∫Lxydx+(y-x)dy,其中L是抛物线y=x2上从点(0,0)到点(1,1)的一段弧

再问:😭再问:老师,把dy化成dx,在dy的式子后面乘以x2的导数是什么意思啊再答:dy=y'dx再问:谢谢老师😂再问:等等,那不是应该除以一个y',才能变成dx吗再答

y=x^2x,求dy

y=x^(2x)lny=2xlnx(1/y)dy=(2+2lnx)dxdy=x^(2x).(2+2lnx)dx

dy/dx=x+y

线性一阶微分方程,公式解:利用积分因子法,可得到积分因子为:e^(-x)结果为:y=C*e^x-(x+1)C为任意常数